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Abstract—Non-orthogonal space-time block codes (STBC) from
cyclic division algebras (CDA) are attractive because they can si-
multaneously achieve both high spectral efficiencies (same spec-
tral efficiency as in V-BLAST for a given number of transmit
antennas) as well as full transmit diversity. Decoding of non-
orthogonal STBCs with hundreds of dimensions has been a chal-
lenge. In this paper, we present a probabilistic data associa-
tion (PDA) based algorithm for decoding non-orthogonal STBCs
with large dimensions. Our simulation results show that the
proposed PDA-based algorithm achieves near SISO AWGN un-
coded BER as well as near-capacity coded BER (within S dB of
the theoretical capacity) for large non-orthogonal STBCs from
CDA. We study the effect of spatial correlation on the BER, and
show that the performance loss due to spatial correlation can be
alleviated by providing more receive spatial dimensions. We re-
port good BER performance when a training-based iterative de-
coding/channel estimation is used (instead of assuming perfect
channel knowledge) in channels with large coherence times. A
comparison of the performances of the PDA algorithm and the
likelihood ascent search (LAS) algorithm (reported in our recent
work) is also presented.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) systems that employ
non-orthogonal space-time block codes (STBC) from cyclic
division algebras (CDA) for arbitrary number of transmit an-
tennas, V;, are quite attractive because they can simultane-
ously provide both full-rate (i.e., N; complex symbols per
channel use, which is same as in V-BLAST) as well as full
transmit diversity [1]. The 2 x 2 Golden code is a well known
non-orthogonal STBC from CDA for 2 transmit antennas [2].
High spectral efficiencies of the order of tens of bps/Hz can
be achieved using large non-orthogonal STBCs. For exam-
ple, a 16 x 16 STBC from CDA has 256 complex symbols
in it with 512 real dimensions; with 16-QAM and rate-3/4
turbo code, this system offers a high spectral efficiency of 48
bps/Hz. Decoding of non-orthogonal STBCs with such large
dimensions, however, has been a challenge. Sphere decoder
and its low-complexity variants are prohibitively complex for
decoding such STBCs with hundreds of dimensions.

In this paper, we present a probabilistic data association (PDA)
based algorithm for decoding large non-orthogonal STBCs
from CDA. Key attractive features of this algorithm are its
low-complexity and near-MAP performance in systems with
large dimensions (e.g., hundreds of dimensions). While cre-
ating hundreds of dimensions in space alone (e.g., V-BLAST)
requires hundreds of antennas, use of non-orthogonal STBCs
from CDA can create hundreds of dimensions with just tens
of antennas (space) and tens of channel uses (time). Given
that 802.11 smart WiFi products with 12 transmit antennas at
2.5 GHz are now commercially available [4]' (which estab-

112 antennas in these products are now used only for beamforming.
Single-beam multi-antenna approaches can offer range increase and inter-
ference avoidance, but not spectral efficiency increase.
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lishes that issues related to placement of many antennas and
RF/IF chains can be solved in large aperture communication
terminals like set-top boxes/laptops), large non-orthogonal
STBCs (e.g., 16 x 16 STBC from CDA) in combination with
large dimension near-MAP decoding using PDA can enable
communications at increased spectral efficiencies of the order
of tens of bps/Hz (note that current standards achieve only
< 10 bps/Hz using only up to 4 transmit antennas).

PDA, originally developed for target tracking, is widely used
in digital communications [5]-[10]. Particularly, PDA algo-
rithm is a reduced complexity alternative to the a posteriori
probability (APP) decoder/detector/equalizer. Near-optimal
performance has been demonstrated for PDA-based multiuser
detection in CDMA systems [5]-[7]. PDA has been used in
the detection of V-BLAST signals with small number of di-
mensions [8]-[10]. To our knowledge, PDA has not been re-
ported for decoding non-orthogonal STBCs with hundreds of
dimensions so far. Our new contributions in this paper are:

o We adapt the PDA algorithm for decoding non-orthogo-
nal STBCs with large dimensions. With i.i.d fading and
perfect channel channel state information at the receiver
(CSIR), the algorithm achieves near-SISO AWGN un-
coded BER and near-capacity coded BER (within 5 dB
of the theoretical capacity) for 12 x 12 STBC from CDA,
4-QAM, rate-3/4 turbo code, and 18 bps/Hz.

« Relaxing the perfect CSIR assumption, we report results
with a training based iterative PDA decoding/channel es-
timation scheme. The iterative scheme is shown to be
effective with large coherence times.

« Relaxing the i.i.d fading assumption by adopting a spa-
tially correlated MIMO channel model (proposed by Ges-
bert et al in [11]), we show that the performance loss due
to spatial correlation is alleviated by using more receive
spatial dimensions for a fixed receiver aperture.

« Finally, the performance of the PDA algorithm is com-
pared with that of the likelihood ascent search (LAS)
algorithm we recently presented in [12]-[14]. The PDA
algorithm is shown to perform better than the LAS al-
gorithm at low SNRs for higher-order QAM (e.g., 16-
QAM), and in the presence of spatial correlation.

II. SYSTEM MODEL

Consider a STBC MIMO system with multiple transmit and
receive antennas. An (n, p, k) STBC is represented by a ma-
trix X, € C™*?, where n and p denote the number of transmit
antennas and number of time slots, respectively, and &k de-
notes the number of complex data symbols sent in one STBC
matrix. The (4, j)th entry in X, represents the complex num-
ber transmitted from the ith transmit antenna in the jth time
slot. The rate of an STBC is %. Let N,. and N; = n denote
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the number of receive and transmit antennas, respectively.
Let H. € CN-XM: denote the channel gain matrix, where
the (7, j)th entry in H, is the complex channel gain from the
jth transmit antenna to the ith receive antenna. We assume
that the channel gains remain constant over one STBC ma-
trix duration. Assuming rich scattering, we model the entries
of H, as CN(0,1). The received space-time signal matrix,
Y. € CN7*P_can be written as

Yc = HcXc + NC7 (1)

where N, € CMr*P is the noise matrix at the receiver and
its entries are modeled as i.i.d CA'(0,0% = Y£2) where E,
is the average energy of the transmitted symbols, and + is the
average received SNR per receive antenna [3], and the (3, j)th
entry in Y. is the received signal at the ith receive antenna in
the jth time-slot. Consider linear dispersion STBCs, where
X, can be written in the form [3]

k
X, = Y aPAl, @)
. i=1
(2)

where x¢~ is the 1th complex data symbol, and Agi) c CNexp
is its corresponding weight matrix. The received signal model
in (1) can be written in an equivalent V-BLAST form as

k
ye = Y ol (Heal”) +ne = Hexe +ne, €
=1
where y, € CNPX1 = yec(Y,), H, € CNPXNep — I, ®
H,), 1, is p x p identity matrix, a") € CNtPx1 = pec (AD),
n, € CNP*l = yec(N,), x, € C¥*! whose ith entry is
the data symbol 2, and H, € CN-P*k whose ith column
is ﬁc aﬁi), 1 = 1,2,--- k. Each element of x. is an M-
PAM/M-QAM symbol. M-PAM symbols take discrete val-
ues from A £ {ag,g=1,--- , M}, where ay = (2¢—1— M),
and M-QAM is nothing but two PAMs in quadrature. Let y.,
H,, x., n. be decomposed into real and imaginary parts as:
Ye=YI1+3yaQ,
n. =n; +jng, H.=H;+ jHg. 4)
Further, we define H, € R2N-px2k v c R2N-pX1 x ¢
AZX1 and n, € R2N-PX1 a5

H —H
mo- (G, we ) web

x =[x xp)"s m.=[n7 ng]".  (©)

Xe = X1 + jXq,

Now, (3) can be written as

yr = Hix,+n,. @)
Henceforth, we work with the real-valued system in (7). For
notational simplicity, we drop subscripts r in (7) and write

y = Hx+n, ®

where H' = H, € R?MPX2%* vy — y ¢ RVrPX1 y — %, €
A%*! and n = n, € R?¥PX1 We assume that the channel
gains are known at the receiver but not at the transmitter.
A. High-rate Non-orthogonal STBCs from CDA

We focus on the detection of square (i.e., n =p = Ny), full-
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transmit antennas n is given by the matrix in Eqn.(9.2) given
at the bottom of this column. In (9.a), w, = e"%,j =+—1,
and dy., 0 < u,v < n — 1 are the n? data symbols from
a QAM alphabet. When § = eV5J and t = &J, the STBC
in (9.a) achieves full transmit diversity (under ML decoding)
as well as information-losslessness [1]. When 6 = ¢ = 1,
the code ceases to be of full-diversity (FD), but continues to
be information-lossless (ILL). High spectral efficiencies with
large n can be achieved using this code construction. How-
ever, since these STBCs are non-orthogonal, MAP/ML detec-
tion gets increasingly impractical for large n. Consequently, a
key challenge in realizing the benefits of these large STBCs in
practice is that of achieving near-MAP/ML performance for
large n at low decoding complexities. The PDA-based decod-
ing algorithm we present in the following section essentially
addresses this challenge.

IT1. PROPOSED PDA-BASED DECODING

In this section, we present the proposed PDA-based decod-
ing algorithm for square QAM. The applicability of the al-
gorithm to rectangular QAM is straightforward. In the real-
valued system model in (8), each entry of x belongs to a
v M-PAM constellation, where M is the size of the original
square QAM constellation. Let b50)7 bl(-l), ‘.- ,bgq_l) denote
the ¢ = log,(v/M) constituent bits of the ith entry z; of x.
We can write the value of each entry of x as a linear combi-
nation of its constituent bits as

g—1
zo= Y207, i=0,1,---,2k-1. (9
=0
Letb € {+1,—1}29k*1 defined as
T
b 2 [béo),..bé‘l—l)bg(’)...bgq—l)...bgl’g)_l...bé‘;c—_ll)] . (10)

denote the transmitted bit vector. Defining ¢ £ [202" ... 2971,
we can write x as

x = (It ®c)b. an
Using (11), we can rewrite (8) as
y = H(Ix®c)b+n, (12)
——
A

where H € R2V-PX24k g the effective channel matrix. The
MAP estimate of bit bl(-J ) is given by

~(4 arg max i

W= e P00 =aly ), a3)
whose computational complexity is exponential in k. Our
goal is to obtain B, an estimate of b, at low complexities. For
this, we iteratively update the statistics of each bit of b, as
described in the following subsection, for a certain number of
iterations, and hard decisions are made on the final statistics
to get b.
A. Iterative Procedure
The algorithm is iterative in nature, where 2gk statistic up-
dates, one for each of the constituent bits, are performed in
each iteration. We start the algorithm by initializing the

—1 n—1)z 4
sEP by el
—1 n—1)7 4
st dy s wl ). ¢
sy tdg s win i i

—1 i i

5T, 1dn—1,i wp t°
=0 o
Zi:ol do,j wy, t*
i=( n
Yo d1,iwp t”

-1 ;
Yo do,it"
E?:0 dy,qt*

—1 3
TiTo do,itt

rate (i.e., kK = pn = N?), circulant (where the weight ma- _ _ ] ) ©a)
trices Aﬁl)’s are permutation type), non-orthogonal STBCs : : : :
from CDA [1], whose construction for arbitrary number of

—1 i —1 i i —1 n—1)i ;
Sttt SR td, gkt R d, g W tt

i

1 . 1 AR
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a priori probabilities as P(b{) = +1) = P(b) = —1) = 0.5,

Vi=0,---,2k—1andj =0, ---,qg— 1. In an iteration, the

statistics of the bits are updated sequentially, i.e., the ordered
(g—1)

sequence of updates in an iteration is {b(o) sy by e ,

bg,?_l, . gz 11)} The steps involved in each iteration of the

algorithm are derived as follows. The likelihood ratio of bit

bgj ) in an iteration, denoted by AZ(-j ), is
A o POIBT =41 POI =)
CT Pen? = 1) PO =)
2 50 2 o ’
Denoting the ¢th column of H by hy, we can write (12) as
2%k-1  g-1
y = hgy b+ 3 Z hyom 6™ + 1, (15)
0 mtdlin 4
N ~- .

=n
where n € R2VN-PX1 g the interference plus noise vector.
To calculate ,Bi(] ), we approximate the distribution of n to be
Gaussian, and hence y is Gaussian conditioned on bl(-J ). Since
there are 2gk — 1 terms in the double summation in (15), this
Gaussian approximation gets increasingly accurate for large
N, (note that kK = N?). Since a Gaussian distribution is fully
characterized by its mean and covariance, we evaluate the

mean and covariance of y given bgj )= f1and bgj -
For notational simplicity, let us define pf 2 P(bz(-j ) = +1)
and p!~ = P(bgj) = —1). Itis clear that p] " 4 p!~

Let puf* 2 E(yp”) = +1) and pl~ = E(ypp? = —1),

where E(.) denqtes the expectation operator. Now, from (15),

we can write 7 It a
2k—1

q1+J+Z thm 2"t —1).  (16)

O ettt

i+
22 =

. L
Similarly, we can write ui as
2k—1

Il'f_ = q’l-+J +Z Z hql+m(2pl -1 =
=0
mséq(l—l)ﬂ

Next, the 2N,p x 2N,p covariance matrix Cz of y given b/ is

) 2k—1 q—1
cl = {[n +Z Z thm — 2p] Jr-i-l)]
maéq"& o
2k—1 q— T
[n-i-z Z gt m (6™ — 2 ;"++1)] } (18)
0 gl 4

Assuming independence among the constituent bits, we can
simplify C in (18) as

2k—1  g—1

Cl =0’Lny + ), Y harmbgim et (1—p""). (19)

=0 m=0 .
m#q(i—1)+j

Using the above mean and covariance expressions, we can
write the distribution of y given b(J )= +las
Pl = 11) e A AR ) 0)
Y (@mNr|CIE
Using (20), 3/ can be written as

P(b(J)

plt —2hg;;.(17)
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g = e—((y—uzﬂT(cz)*‘<y—u{+>—<y—uz*>T<cz>*1<y—u{*>) @1

Using a ) and ﬂ(J ) A(J ) is computed using (14). Now, using
the value of AEJ ), the statistics of bgg ) s updated as follows.
and Using P(bgj) =+l1ly) + P(bgj) = —1]y) = 1, we have
©)
+1A§"’ ’
This completes one iteration of the algorithm; i.e., each it-

eration involves the computation of a(J ) and equations (16),

17, (19), (21) (14), and (22) for all ¢, . The updated val-
ues of P(bY = +1]y) and P(b{?) = —1]y) in (22) for all
i, j are fed back as a priori probabilities to the next iteration?.
The algorithm terminates after a certain number of such iter-
ations. At the end of the last iteration, hard decision is made
on the final statistics to obtain the bit estimate 31(-] ) as +1 if

Agj ) > 1,and —1 otherwise. In coded systems, Agj )°s are fed
as soft inputs to the decoder.

B. Complexity Reduction

The most computationally expensive operation in computing
ﬂi(] ) is the evaluation of the inverse of the covariance matrix,
C!, of size 2N,.p x 2N, p which requires O(N?p®) complexity,
which can be reduced as follows. Define matrix D as

; 1
+1ly) = P(b’E]) =—lly) = W (22)

2k—1 g—1
D é 0'212N,,p +Z Z hql+7nhgwl+7n4p‘lmJr
=0 m=0
At the start of the algorithm, with p?* and p{* initialized to
0.5 for all 4, 7, D becomes %Iy, , + HHT.
Computation of D~1: We note that when the statistics of bl(-j )
is updated using (22), the D matrix in (23) also changes. A
straightforward inversion of this updated D matrix would re-
quire O(N2p?) complexity. However we can obtain the D1
from the previously available D! in O(N 2p2) complexity as

follows. Since the statistics of only b( is updated, the new D
matrix is just a rank one update of the old D matrix. There-

(1—ph). (23)

fore, using the matrix inversion lemma, the new D~ can be
obtained from the old D!
D 'hy; hm D!
D_1 «— D_1 T +J +J 10 (24)
hn1+]D hn1+g + -
where ; ;
= 4pj-+(1 —p]-+) 4172 old( itld)’ (25)

where p/* and p]?, are the new (i.e., after the update in
(22)) and old (before the update) values, respectively. It can
be seen that both the numerator and denominator in the 2nd
term on the RHS of (24) can be computed in O(N?2p?) com-
plexity. Therefore, the computation of the new D! using the
old D~ can be done in O(N?2p?) complexity.

Computation of (C)~
C/ in terms of D as

C! = D—4p!*Q—p!M)hgi;hl, . (26)

We can compute (C{ )~! from D! at a reduced complexity
using the matrix inversion lemma, which states that

1. Using (23) and (19), we can write

2The computation of the statistics of a current bit in an iteration makes
use of the newly computed statistics of its previous bits (as per the ordered
sequence of statistic updates) in the same iteration and the statistics of its
next bits available from the previous iteration.
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(P+QRS) '=P '-P QR '+SP!Q) 'SP (27)
Substituting Pon, px2n,p = D, Qan,px1 = hgitj, Rix1 =
—4pl* (1 —pI*), and S1xan,, = b1, in (27), we get

D~ hyij by D7

which can be computed in O(N?2p?) complexity.

(¢ = D! , (28)

T T
hoij

Computation of u{ * and [,Lg ~: Computation of ﬂi(j ) involves
the computation of uz * and ug ~ also. From (17), it is clear
that uz ~ can be computed from u{"’ with a computational
overhead of only O(NN,p). From (16), it can be seen that com-
puting uf would require O(¢N,pk) complexity. However,

this complexity can be reduced as follows. Define vector u as
2k—1 g—1

A
u = >N ham(20 - 1). (29)
=0 m=0
Using (16) and (29), we can write
plt = u+2(1-p*)hgity. (30)

u can be computed iteratively at O(N,p) complexity as fol-
lows. When the statistics of bgj ) is updated, we can obtain the
new u from the old u as

u o u+t2(p]" = pl ) bniss, GD
whose complexity is O(N,p). Hence, the computation of
ufr and uz ~ needs O(N,.p) complexity.

C. Overall Complexity

We need to compute HH” at the start of the algorithm. This
requires O(gkN?Zp?) complexity. So the computation of the
initial D! requires O(gkN?p®) + O(N2p?). Based on the
complexity reduction in Sec. I1I-B, the complexity in updat-
ing the statistics of one constituent bit is O(N2p?). So, the
complexity for the update of all the 2gk constituent bits in
an iteration is O(gkN?p?). Since the number of iterations is
fixed, the overall complexity of the algorithm is O(qkNZp?) +
O(N2p®). For N; = N,, since there are k symbols per STBC
and q bits per symbol, the overall complexity per bit is O(p? N7)

IV. RESULTS AND DISCUSSIONS
In this section, we present the simulated uncoded/coded BER
performance of the PDA algorithm in decoding non-orthogonal
STBCs from CDA?. Number of iterations in the PDA algo-
rithm is set to m = 10 in all the simulations.
PDA versus LAS performance with 4-QAM: In Fig. 1, we
plot the uncoded BER of the PDA algorithm as a function
of average received SNR per receive antenna, +, in decoding
4 x 4,8 x 8,16 x 16 ILL STBCs from CDA with N; = N,
and 4-QAM. Perfect CSIR and i.i.d fading are assumed. For
the same settings, the performance of the LAS algorithm in
[12]-[14] with MMSE initial vector are also plotted for com-
parison. From Fig. 1, it is seen that
« the BER performance of PDA algorithm improves and
approaches SISO AWGN performance as Ny = N, is
increased; e.g., performance close to within about 1 dB

30ur simulation results showed that the performance of FD-ILL (§ =
e\/gj,t = e J)and ILL (6 = t = 1) STBCs with PDA decoding were
almost the same. Here, we present the performance of ILL STBCs.
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Fig. 1. Comparison of uncoded BER of PDA and LAS algorithms in decod-
ing4 x 4,8 x 8,16 x 16 ILL STBCs. Ny = Ny, 4-QAM. BER improves
Jor increasing STBC sizes. With 4-QAM, PDA and LAS algorithms achieve
almost same performance.

Fig. 2. Comparison of uncoded BER of PDA and LAS algorithms in decod-
ing 4 x 4,8 X 8,16 x 16 ILL STBCs. N; = Ny, 16-QAM. With 16-QAM,
PDA performs better than LAS at low SNRs.

from SISO AWGN performance is achieved at 10~2 un-
coded BER in decoding 16 x 16 STBC from CDA having
512 real dimensions, and this illustrates the ability of the
PDA algorithm to achieve excellent performance at low
complexities in large non-orthogonal STBC MIMO.
o with 4-QAM, PDA and LAS algorithms achieve almost
the same performance.
PDA versus LAS performance with 16-QAM: Fig. 2 presents
an uncoded BER comparison between PDA and LAS algo-
rithms in decoding ILL STBCs from CDA with Ny = Nr
and 16-QAM under perfect CSIR and i.i.d fading. It can be
seen that the PDA algorithm performs better at low SNRs than
the LAS algorithm. For example, with 8 x 8 and 16 x 16
STBCs, at low SNRs (e.g., < 25 dB for 16 x 16 STBC), PDA
algorithm performs better by about 1 dB compared to LAS
algorithm at 10~2 uncoded BER.
Turbo coded BER performance of PDA: Figure 3 shows the
rate-3/4 turbo coded BER of the PDA algorithm under perfect
CSIR and i.i.d fading for 12 x 12 ILL. STBC with N; =N, =12
and 4-QAM, which corresponds to a spectral efficiency of 18

2001
Authorized licensed use limited to: INDIAN INSTITUTE OF SCIENCE. Downloaded on January 19, 2010 at 04:32 from |IEEE Xplore. Restrictions apply.



Fig. 3. Turbo coded BER of the PDA algorithm in decoding 12 x 12 ILL
STBC with Ny = N, = 12, 4-QAM, rate-3/4 turbo code, 18 bps/Hz and
m = 10 for ) perfect CSIR, and i) estimated CSIR using 2 iterations be-
tween PDA decoding/channel estimation. With perfect CSIR, PDA performs
close to within 5 dB from capacity. With estimated CSIR, performance ap-
proaches to that with perfect CSIR with increasing coherence times.

bps/Hz. The theoretical minimum SNR required to achieve
18 bps/Hz spectral efficiency on a N;=N,=12 MIMO channel
with perfect CSIR and i.i.d fading is 4.3 dB (obtained through
simulation of the ergodic capacity formula [3]). From Fig. 3,
it is seen that the PDA algorithm is able to achieve vertical fall
in coded BER within about 5 dB from theoretical minimum
SNR, which is a good nearness to capacity performance.

Iterative Decoding/Channel Estimation: We relax the perfect
CSIR assumption by considering a training based iterative
PDA decoding/channel estimation scheme. Transmission is
carried out in frames, where one N, x N, pilot matrix (for
training purposes) followed by N, data STBC matrices are
sent in each frame. One frame length, T, (taken to be the
channel coherence time) is T = (Vg + 1)N; channel uses.
The proposed scheme works as follows: ¢) obtain an MMSE
estimate of the channel matrix during the pilot phase, ii) use
the estimated channel matrix to decode the data STBC ma-
trices using PDA algorithm, and 4i7) iterate between chan-
nel estimation and PDA decoding for a certain number of
times. For the 12 x 12 ILL STBC from CDA, in addition
to perfect CSIR performance, Fig. 3 also shows the perfor-
mance with CSIR estimated using the proposed iterative de-
coding/channel estimation scheme for Ny = 1 and Ny = 8.
Two iterations between decoding and channel estimation are
used. With N; = 8 (which corresponds to large coherence
times, i.e., slow fading) the BER and bps/Hz with estimated
CSIR get closer to those with perfect CSIR.

Effect of Spatial MIMO Correlation: In Figs. 1 to 3, we as-
sumed i.i.d fading. But spatial correlation at transmit/receive
antennas and the structure of scattering and propagation en-
vironment can affect the rank structure of the MIMO channel
resulting in degraded performance. We relaxed the i.i.d. fad-
ing assumption by considering the correlated MIMO chan-
nel model in [11], which takes into account carrier frequency
(fc), spacing between antenna elements (d:, d.), distance be-
tween transmit and receive antennas (R), and scattering envi-

2002
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Fig. 4. Effect of spatial correlation on the performance of PDA in decoding
12 x 12 ILL STBC from CDA. Ny = 12, N, = 12,18, 16-QAM, rate-
3/4 turbo code, 36 bps/Hz. Correlated channel parameters: f. = 5 GHz,
R =500m,S =30, Dy = D, =20m, 6t = 6, = 90°, Np.d, = 72
cm, d; = dr. Spatial correlation degrades performance; using Ny > Ny
alleviates the this performance loss.

ronment. In Fig. 4, we plot the BER of the PDA algorithm
in decoding 12 x 12 ILL STBC from CDA with perfect CSIR
in 4) i.i.d. fading, and i) correlated MIMO fading model in
[11]. It is seen that, compared to i.i.d fading, there is a loss in
diversity order in spatial correlation for N, = N, = 12; further,
use of more receive antennas (N, = 18, N; = 12) alleviates
this loss in performance. The proposed PDA algorithm can
be used to decode perfect codes of large dimensions as well.
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