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Introduction

1 Adaptive algorithms that are iterative in structure.

xn+1 = xn + a(n) [h(xn) + Mn+1] , (1)

where a(n) is the step-size, Mn+1 is the martingale noise, h is
the drift or mean field.

2 Example: stochastic gradient descent; h = −∇F .

3 Focus of our talk: h can be set-valued.

4 Example: stochastic sub-gradient descent;
h(x) = {−g | F (y) ≥ F (x) + gT (y − x) ∀y}.
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Gradient based learning algorithms with errors.

1 Stochastic gradient descent to find the minimum of
F : Rd → R:

xn+1 = xn − a(n)




F (xn+p(n)ξ1)−F (xn−p(n)ξ1)
2p(n)

...
F (xn+p(n)ξd )−F (xn−p(n)ξd )

2p(n)

+ Mn+1

 .

(2)

Two-sided Kiefer-Wolfowitz gradient estimator is used.

Error at stage n:
εn = (−∇F (xn))− gradient estimate at stage n.

ξi is the vector with 1 at the i th place and 0 in all others.
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Errors vanish over time: εn → 0

1 Bertsekas and Tsitsiklis studied the case when εn → 0:

xn+1 = xn + a(n) [g(xn) + Mn+1] , g(xn) ∈ −∇Fx |x=xn + Bεn(0).

2 (A1) ‖εn‖ ≤ a(n)(c + d‖∇Fx |x=xn‖), (A2)
∑

n
a(n)2

p(n)2
<∞.

3 Main result: The iterates diverge a.s. or converge to the
minimum a.s.

4 Pros: Stability not assumed, no “mixed” results.
Cons: couples step-sizes and estimation errors, requires
estimation errors to go to zero, does not analyze Newton’s
method.

Bertsekas, Dimitri P and Tsitsiklis, John N. (2000) ‘Gradient convergence

in gradient methods with errors.’, SIAM Journal on Optimization,

10(3):627642, 2000.
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Our contributions: εn 9 0

1 In practice p(n) := p at every stage i.e., expect εn ≤ ε.

2 (A1), (A2) (Step-size and the estimation error decoupled).

3 Unified framework to analyze gradient descent, Newton’s
method and any gradient method with constant-errors.

xn+1 = xn + a(n) [g(xn) + Mn+1] , g(xn) ∈ G (xn), (3)

G (xn) = −∇Fx |x=xn + Bε(0) or −H−1(xn)∇Fx |x=xn + Bε(0).
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Main result: Gradient descent or Newton’s method.

1 Sufficient conditions for stability and convergence that does
not couple step-size and error.

2 Main result: Given δ > 0, there exists ε(δ) > 0 such that if
the estimation error at each stage is at most ε(δ) then the
iterates are stable and converge to the δ-neighborhood of the
minimum set of F .

A.R. and Shalabh Bhatnagar (2016) ‘Gradient-based learning algorithms

with constant-error gradient estimators: stability and convergence’, arxiv

preprint: arXiv:1604.00151.
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General Borkar-Meyn Theorem for SRI

1 Easily verifiable sufficient conditions for stability and
convergence of

xn+1 = xn + a(n) [yn + Mn+1], where yn ∈ h(xn). (4)

‖h(x)‖ ≤ K (1 + ‖x‖); h(x) is convex and compact; h is upper
semi-continuous.

2 Understanding unstable iterates becomes important.

3 ẋ(t) ∈ h∞(x(t)) arises naturally in such a study.

A.R. and Shalabh Bhatnagar (2015) ‘A Generalization of the Borkar-Meyn

Theorem for Stochastic Recursive Inclusions.’, [arXiv:1502.01953v2].
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General Borkar-Meyn Theorem for SRI

1 Under a projective scheme with projections on the unit ball
centered at origin

xn+k

r(n)
=

xn
r(n)

+
k−1∑
i=0

a(n + i)

(
y(n + i)

r(n)
+

Mn+i+1

r(n)

)
, (5)

where r(n) = ‖xn‖ ∨ 1. Unstable means r(n) ↑ ∞.

2 For c ≥ 1 and x ∈ Rd , define hc(x) = h(cx)/c .
Note y(n + i)/r(n) ∈ hr(n)(xn+i/r(n)).

h∞(x) := Limsupc→∞ hc(x).

Limsupn→∞Kn := {y | lim
n→∞

d(y ,Kn) = 0}.

3 Impose mild restrictions on ẋ(t) ∈ h∞(x(t)) for stability.
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Two timescale schemes for SRI : Motivation

1 Constrained minimization: f : Rd → R and g : Rd → Rk .
Minimize f (x) subject to the condition that g(x) ≤ 0.
Suppose strong duality holds then we may solve the following
dual problem:

sup
µ∈Rk

µ≥0

inf
x∈Rd

(
f (x) + µTg(x)

)
.

2

xn+1 = xn − a(n)
[
∇x

(
f (xn) + µTn g(xn)

)
+ M2

n+1

]
,

µn+1 = µn + b(n)
[
∇µ

(
f (xn) + µTn g(xn)

)
+ M1

n+1

]
.

In the above b(n)
a(n) → 0.
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Our contributions

1 To study the x iterates: λm : Rk → Rd , where λm(µ0) is the
global attractor of ẋ(t) = −∇x(f (x) + µT0 g(x)).

2 Previous literature: λm is single valued and continuous map.

3 We allow λm to be set-valued. To show u.s.c. of λm we use
Dantzig, Folkman and Shapiro.

4 Main result: (xn, µn)→ (x∗, µ∗) that solves the dual.

G. B. Dantzig and J. Folkman and N. Shapiro (1967) ‘On the continuity

of the minimum set of a continuous function’, Journal of Mathematical

Analysis and Applications.
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General theory: Two timescale for SRI

1 More generally, we consider the following two timescale
scheme:

xn+1 = xn + a(n)
[
un + M1

n+1

]
,

yn+1 = yn + b(n)
[
vn + M2

n+1

]
,

un ∈ h(xn, yn), vn ∈ g(xn, yn), h : Rd+k →
{
subsets of Rd

}
and g : Rd+k →

{
subsets of Rk

}
.

2

Assume stability of the iterates.
ẋ(t) ∈ h(x(t), y) has a globally attracting set, Ay , that is also
Lyapunov stable.
The set-valued map λ : Rk → Ay is upper semi-continuous.

A.R. and Shalabh Bhatnagar (2015) ‘Stochastic recursive inclusion in two

timescales with an application to the Lagrangian dual problem.’,

[arXiv:1502.01956v2].
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Stability of SAA with controlled Markov noise

1 Sufficient conditions for stability and convergence of SAA with
‘controlled Markov noise’.

xn+1 = xn + a(n) [h(xn, yn) + Mn+1] , (6)

where {yn}n≥0 is an S-valued Markov process such that S is
compact.

2 In reinforcement learning, the state space, S , is often finite
(hence compact).

3 Our contribution: Sufficient conditions for stability and
convergence including the case of non-unique stationary
distributions.

A.R. and Shalabh Bhatnagar (2015) ‘Stability Theorem for Stochastic
Approximation with Controlled Markov Noise with an Application to
Temporal-Difference Learning .’, [arXiv:1504.06043v1].
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Thank you. Questions?
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