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Introduction

Adaptive algorithms that are iterative in structure.
Xnt1 = X + a(n) [h(xn) + Mp11] (1)

where a(n) is the step-size, M,,11 is the martingale noise, h is
the drift or mean field.

Example: stochastic gradient descent; h = —VF.
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Introduction

Adaptive algorithms that are iterative in structure.
Xnt1 = X + a(n) [h(xn) + Mp11] (1)

where a(n) is the step-size, M,,11 is the martingale noise, h is
the drift or mean field.

Example: stochastic gradient descent; h = —VF.

Focus of our talk: h can be set-valued.

Example: stochastic sub-gradient descent;
h(x)={—g | F(y) = F(x)+ g (y — x) Vy}.
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Gradient based learning algorithms with errors.

Stochastic gradient descent to find the minimum of

F:RY - R:
F(xntp(n)&1)—F(xn—p(n)&1)
2p(n)
Xnt1 = Xp — a(n) : + M1
F(xntp(n)€q)—F (xn—p(n)&q)
2p(n)

(2)

Two-sided Kiefer-Wolfowitz gradient estimator is used.

Error at stage n:
€n = (—VF(xs)) — gradient estimate at stage n.

& is the vector with 1 at the i*" place and 0 in all others.
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Errors vanish over time: ¢, — 0

Bertsekas and Tsitsiklis studied the case when ¢, — 0:

Xn+1 = Xp + a(n) [g(Xn) + Mn-l—l] s g(Xn) € _VFX|X:Xn + Een(o)

Bertsekas, Dimitri P and Tsitsiklis, John N. (2000) ‘Gradient convergence
in gradient methods with errors.’, SIAM Journal on Optimization,
10(3):627642, 2000.
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Errors vanish over time: ¢, — 0

Bertsekas and Tsitsiklis studied the case when ¢, — 0:

Xn+1 = Xp + a(n) [g(Xn) + Mn-l—l] s g(Xn) € _VFX|X:Xn + Een(o)

an 2
(A1) [lenll < a(n)(c + |V Flxm ), (A2) 3, 28 < oo,

Main result: The iterates diverge a.s. or converge to the
minimum a.s.

Pros: Stability not assumed, no “mixed” results.
Cons: couples step-sizes and estimation errors, requires

estimation errors to go to zero, does not analyze Newton's
method.

Bertsekas, Dimitri P and Tsitsiklis, John N. (2000) ‘Gradient convergence
in gradient methods with errors.’, SIAM Journal on Optimization,
10(3):627642, 2000.
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Our contributions: ¢, - 0

In practice p(n) := p at every stage i.e., expect ¢, < €.
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Our contributions: ¢, - 0

In practice p(n) := p at every stage i.e., expect ¢, < €.
{AL){A2) (Step-size and the estimation error decoupled).

Unified framework to analyze gradient descent, Newton's
method and any gradient method with constant-errors.

Xnt1 = Xn +a(n) [g(xn) + Mnia], &(xn) € G(xn),  (3)

G(xn) = =V Fx|x=x, + Bc(0) or —H1(x,)V Fx|x=x, + B(0).
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Main result: Gradient descent or Newton's method.

Sufficient conditions for stability and convergence that does
not couple step-size and error.

Main result: Given ¢ > 0, there exists €(0) > 0 such that if
the estimation error at each stage is at most ¢(d) then the
iterates are stable and converge to the d-neighborhood of the
minimum set of F.

A.R. and Shalabh Bhatnagar (2016) ‘Gradient-based learning algorithms
with constant-error gradient estimators: stability and convergence’, arxiv
preprint: arXiv:1604.00151.
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General Borkar-Meyn Theorem for SRI

Easily verifiable sufficient conditions for stability and
convergence of

Xpt1 = Xp + a(n) [yn + Myi1], where y, € h(x,).  (4)

Ilh(x)|| < K(1+ ||x]|); h(x) is convex and compact; h is upper
semi-continuous.

A.R. and Shalabh Bhatnagar (2015) ‘A Generalization of the Borkar-Meyn
Theorem for Stochastic Recursive Inclusions.’, [arXiv:1502.01953v2)].
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General Borkar-Meyn Theorem for SRI

Easily verifiable sufficient conditions for stability and
convergence of

Xpt1 = Xp + a(n) [yn + Myi1], where y, € h(x,).  (4)

Ilh(x)|| < K(1+ ||x]|); h(x) is convex and compact; h is upper
semi-continuous.
Understanding unstable iterates becomes important.

X(t) € hoo(x(t)) arises naturally in such a study.

A.R. and Shalabh Bhatnagar (2015) ‘A Generalization of the Borkar-Meyn
Theorem for Stochastic Recursive Inclusions.’, [arXiv:1502.01953v2].
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General Borkar-Meyn Theorem for SRI

Under a projective scheme with projections on the unit ball
centered at origin

Xn+k
r(n)

i ().

where r(n) = ||xa|| V 1. Unstable means r(n) 1 co.
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General Borkar-Meyn Theorem for SRI

Under a projective scheme with projections on the unit ball
centered at origin

k—1
Xn+k _ Xn aln+ i y( + /) Mn+i+1
o ) (Ut ) @

where r(n) = ||xa|| V 1. Unstable means r(n) 1 co.

For ¢ > 1 and x € RY, define h.(x) = h(cx)/c.
Note y(n1+ 1)/r(n) € hygn)(xnsi/ ().
hoo(x) := Limsupc—_yo0 he(x).
Limsupn—0cKn := {y | lim d(y,Kn) = 0}.

n—o00
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General Borkar-Meyn Theorem for SRI

Under a projective scheme with projections on the unit ball
centered at origin

k—1
Xn+k _ Xn aln+ i y( +/) Mn+i+1
(o) = () * 2 (e ) ©

where r(n) = ||xa|| V 1. Unstable means r(n) 1 co.

For ¢ > 1 and x € RY, define h.(x) = h(cx)/c.
Note y(n+i)/r(n) € h( (Xnti/r(n)).

hoo(x) := Limsupc—_yo0 he(x).
Limsupp—oKn :== {y | lim d(y, K,) = 0}.
n—o0

Impose mild restrictions on x(t) € hoo(x(t)) for stability.
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Two timescale schemes for SRI: Motivation

Constrained minimization: f: R? — R and g: RY — Rk,
Minimize f(x) subject to the condition that g(x) < 0.
Suppose strong duality holds then we may solve the following
dual problem:

sup inf (f(x) —I—/tTg(x)).
MERk xERI
>0
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Two timescale schemes for SRI: Motivation

Constrained minimization: f: R? — R and g: RY — Rk,
Minimize f(x) subject to the condition that g(x) < 0.
Suppose strong duality holds then we may solve the following
dual problem:

sup inf (f(x) —I—/tTg(x)).
MERk xERI
>0

Xn41 = Xp — a(n) [Vx (f(x,,) + M,Tg(xn)) + M%ﬂ} ;
Knt1 = fn + b(”) [Vu (f(x,,) + ,U,,Z—g(x,,)) + M,%+1} .

In the above 1;83 — 0.

Arun Selvan. R, Department of CSA, lISc 9/13



Our contributions

To study the x iterates: A, : RX — RY, where \,,(10) is the
global attractor of x(t) = —V(f(x) + pd g(x)).

Previous literature: A, is single valued and continuous map.

G. B. Dantzig and J. Folkman and N. Shapiro (1967) ‘On the continuity
of the minimum set of a continuous function’, Journal of Mathematical

Analysis and Applications.
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Our contributions

To study the x iterates: A, : RX — RY, where \,,(10) is the
global attractor of x(t) = —V(f(x) + pd g(x)).

Previous literature: A, is single valued and continuous map.

We allow A\, to be set-valued. To show u.s.c. of \,, we use
Dantzig, Folkman and Shapiro.

Main result: (xn, n) — (x*, 1*) that solves the dual.
G. B. Dantzig and J. Folkman and N. Shapiro (1967) ‘On the continuity

of the minimum set of a continuous function’, Journal of Mathematical
Analysis and Applications.
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General theory: Two timescale for SRI

More generally, we consider the following two timescale
scheme:
Xnt1 = Xn + a(n) [Un + M%+1] )
Yn+1 = Yn+ b(n) [Vn I Mg+1] )

Un € h(xn, ¥n), Vo € &(Xn, ¥n), h: RITK — {subsets of Rd}
and g : RITk — {subsets of R¥}.

A.R. and Shalabh Bhatnagar (2015) ‘Stochastic recursive inclusion in two
timescales with an application to the Lagrangian dual problem.’,
[arXiv:1502.01956v2].
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General theory: Two timescale for SRI

More generally, we consider the following two timescale
scheme:

Xnt1 = Xn + a(n) [Un + M%+1] )
Ynt+1 = Yn + b(n) [Vn + Mg+1] )

Un € h(xn, ¥n), Vo € &(Xn, ¥n), h: RITK — {subsets of Rd}
and g : RITk — {subsets of R¥}.

m Assume stability of the iterates.

m Xx(t) € h(x(t),y) has a globally attracting set, A,, that is also
Lyapunov stable.

m The set-valued map X : R — A, is upper semi-continuous.

A.R. and Shalabh Bhatnagar (2015) ‘Stochastic recursive inclusion in two
timescales with an application to the Lagrangian dual problem.’,
[arXiv:1502.01956v2].
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Stability of SAA with controlled Markov noise

Sufficient conditions for stability and convergence of SAA with
‘controlled Markov noise’.

Xn+1 = Xp + a(n) [h(Xnvyn) + M"+1] ’ (6)

where {y,}n>0 is an S-valued Markov process such that S is
compact.

In reinforcement learning, the state space, S, is often finite
(hence compact).

Our contribution: Sufficient conditions for stability and
convergence including the case of non-unique stationary
distributions.

A.R. and Shalabh Bhatnagar (2015) ‘Stability Theorem for Stochastic
Approximation with Controlled Markov Noise with an Application to
Temporal-Difference Learning .", [arXiv:1504.06043v1].
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Thank you. Questions?
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