Compact Dual Band Bandstop filters using Stepped Impedance Resonators

Sathyajit B
M.Tech, CEDT
IISc, Bangalore

Introduction:
Bandstop filters are used to reject unwanted frequency components. Mixers and Power amplifiers will have double sideband spectral regrowth due to intermodulation and distortion. Dual band reject filters can be used to reject these frequencies. Another added advantage is the low pass band insertion loss when compared to the bandpass filters, because the resonators will resonate in the stopband than in the passband. There are two popular approaches to implement the dual band response: one which uses Zolotarev function and the other which uses Chebyshev or Maximally flat function with simple frequency variable transformations. Topologies for single band reject filter is discussed in [2]. Parallel-connected different-length open stubs have recently been presented as composite shunt resonators to obtain dual-band performance [4]. However, further size reduction that is achievable by applying stepped-impedance resonators (SIRs) [5],[6] in filter design. Circuit synthesis for the DBBSF (Dual band band reject filter) topology used here is presented in [3] and the transformation from Low pass filter to a band reject filter and the equivalent circuit for Dual band response is explained.

This report presents the design of DBBSF whose center frequency and bandwidth is controllable. This topology achieves size reduction by using single SIR instead of two parallel connected stubs. The design equations are presented here. A DBBSF with center frequencies 2.45GHz and 5.2GHz is designed, fabricated and results are presented.

Synthesis of the DBBSF:

Fig 1: Schematic of DBBSF of order 2 using SIR’s
Fig 2: Equivalent Circuit for Fig 1 using series LC resonators and a J inverter.

DBBSF’s have two parallel connected different length open stubs which are quarter wavelength long at the respective midband frequencies. A topology that replaces these parallel connected stubs with SIR’s is shown here in Fig 1. Fig 2 shows the equivalent circuit of Fig 1 in which the composite shunt resonator structure is used to get the two antiresonance frequencies. At the first resonant frequency when series resonator formed by L1 and C1 resonate, series resonator formed by L2 and C2 behaves as an open circuit as their impedance is much larger than that offered by the former. At the second stop band frequency series resonator formed by L2 and C2 will resonate, and the series resonator formed by L1 and C1 will behave as open circuit. Thus this represents a DBBSF.

Fig 3 shows the equivalence between an open circuited SIR and two parallel connected series resonators.

The input impedance of the SIR is got by applying simple network theory principles to a cascade of an open circuited line and another short circuited line.

\[Z_{SIR} = j Z_1 (Z_1 \tan \theta_1 - Z_2 \cot \theta_2) / (Z_1 + Z_2 \tan \theta_1 \cot \theta_2) \]

---(1)---

The input impedance of the composite series LC resonators connected in parallel is given as

\[Z_c = \frac{j \sqrt{L_1 L_2 (\omega^2 - \omega_1^2)(\omega^2 - \omega_2^2)}}{\omega \omega_1 (\sqrt{C_1 L_2 (\omega^2 - \omega_2^2)} + \sqrt{C_2 L_1 (\omega^2 - \omega_1^2)})} \]

---(2)---

The resonant conditions are characterized by the condition \(Z_{SIR} = 0 \).

Additional equations are got by solving for the reactance slope parameter at the respective stop band frequencies [7]. The reactance slope parameter must be equal for both the topologies at each resonant frequency. Hence we get the following equations (3)-(6), after applying reactance slope parameter to the equations (1) and (2) and equating them.

\[Z_1 \tan \theta_1 - Z_2 \cot \theta_2 = 0 \]

---(3)---

\[Z_1 \tan (\text{rf } \theta_1) - Z_2 \cot (\text{rf } \theta_2) = 0 \]

---(4)---

\[\frac{Z_1 (Z_1 Z_2 \theta_2 + Z_1^2 \theta_1 \sin^2 \theta_2 + Z_2^2 \theta_1 \cos^2 \theta_2)}{2 (Z_1 \cos \theta_1 \sin \theta_2 + Z_2 \sin \theta_1 \cos \theta_2)^2} = \frac{1}{g_1 \Delta f} \]

---(5)---
\[
\frac{rf Z1 (Z1 Z2 rf \theta 2 + Z1^2 rf \theta 1 \sin^2 (rf \theta 2) + Z2^2 rf \theta 1 \cos^2 (rf \theta 2))}{2 (Z1 \cos (rf \theta 1) \sin (rf \theta 2) + Z2 \sin (rf \theta 1) \cos (rf \theta 2))^2} = \frac{1}{g1 \Delta s} \quad \text{------------------------(6)}
\]

rf is the ratio of frequencies \(\omega_2\) to \(\omega_1\). \(\Delta f\) and \(\Delta s\) are the fractional bandwidths. We note that the electrical lengths \(\theta_1\) and \(\theta_2\) are specified at the first stopband frequency \(\omega_1\). The roots of the equations (3) to (6) can be calculated using MATLAB or any root searching program. The MATLAB code used to calculate the four design parameters \(Z_1\), \(Z_2\) and \(\theta_1\), \(\theta_2\) is given in appendix.

The dual band performance is got by adding a \(J\) inverter which is shown in Fig 4. This employs two open stubs with a transmission line in between [8] [9]. The electrical lengths and impedances are got by setting \(A=0\) and \(B=+j/J\) or \(-j/J\) in the ABCD matrix. This gives \(\theta_3=\theta_4= n\pi/(r_f+1)\) where \(n\) is any natural number.

\[Z_3= \frac{1}{J \sin (\theta 3)} \quad \text{---------------------------------------(7)}\]

\[Z_4= \frac{\tan^2 (\theta 3)}{J \sin (\theta 3)} \quad \text{---------------------------------------(8)}\]

Here again the electrical lengths are specified at the first stop band frequency and the impedances are normalized to \(Z_0\). The SIR's have input admittances close to infinity at the resonant frequencies, and the open stubs have a much lower input admittance at the resonant frequencies, hence in practice they can be removed from the design to save space at a cost of reduction in bandwidth. The loss in bandwidth can be attributed to the removal of these open stubs.

![Figure 3: Equivalence between shunt connected series LC resonators and open ended SIR](image)
Illustrative example: DBBSF for 2.45Ghz and 5.2 Gzh.

A second order DBBSF was simulated, fabricated and tested on an FR-4 substrate with $\varepsilon_r=4.4$ and tan$\delta=0.02$. The thickness of the substrate was 1.58mm and conductor thickness is 16um. The stop band frequencies used are 2.45 and 5.2 Gzh. The fractional bandwidths Δ_1 and Δ_2 are 70% and 35% respectively. This is chosen to keep the ratio of bandwidths (r_b) 0.5. It is observed through graphs obtained by solving equations (3)-(6), that more compact design is got by keeping $r_b=1$. The equations (3) - (6) were solved using the matlab code given in appendix. This gives the following values:

- $Z_1=50.199 \Omega$ and $\theta_1=57.645^\circ$ (Width= 2.94mm, Length=10.73mm)
- $Z_2=125.106 \Omega$ and $\theta_2=57.64^\circ$ (Width=0.331mm, Length=11.434mm)

The values for the J inverter is given by equations (7) and (8) as:

- $Z_3=59.187 \Omega$ and $\theta_3=57.6^\circ$ (Width=2.213mm, Length=10.86mm)

The open stubs were omitted from the J inverter to give a compact design, however the bandwidth is reduced due to this. After substituting the above values the center frequencies were got at 2.4Ghz and 5Ghz. This is because the electrical lengths have been calculated at 2.45Ghz. So the length of the SIR (θ_2) was reduced by 1mm i.e. 5.04°, this gave center frequencies at 2.45Ghz and 5.2Ghz as desired.

Agilent ADS was used for all the simulations. The layout of the DBBSF is shown in Fig 5. Fig 6 shows the fabricated design. The s11 and s21 parameters are shown in Fig 7 and Fig 8 respectively.
Fig 5: Layout of the DBBSF in Agilent ADS.

Fig 6: Photograph of the fabricated dual band bandstop filter.
Fig 7: S11 versus frequency showing measured and simulated results.

Fig 8: S21 versus frequency showing measured and simulated results.
Results:

Center frequencies : 2.42 Ghz and 5.13Ghz.

Fractional Bandwidths(calculated at -10dB points) : 41% at 2.42 Ghz and 19% at 5.13 Ghz.

Rejection level at 2.42 Ghz : 34dB

Rejection level at 5.13 Ghz : 43dB

Pass band insertion loss : 2.42 dB.

Circuit dimensions : 35 mm by 25.15 mm.

REFERENCES:

[1] Compact Dual-Band Bandstop Filters Using Stepped-Impedance Resonators Kuo-Sheng Chin, Member, IEEE, Jun-Hong Yeh, and Shuh-Han Chao

APPENDIX:

Matlab code : To solve the nonlinear equations (3) -(6) :
A function is written , incorporating the constants in the equations by substituting them as shown below.

function F=myfun(z)
F=[z(1)*tan(z(3))-z(2)*cot(z(4));
 z(1)*tan(2.1224*z(3))-z(2)*cot(2.1224*z(4));
 z(1)*(z(1)*z(2)*z(4)+z(1)*z(1)*z(3)*sin(z(4))*sin(z(4))+z(2)*z(2)*z(3)*cos(z(4))*cos(z(4)))/(2*power((z(1)*cos(z(3))*sin(z(4))+z(2)*cos(z(4))*sin(z(3))),2))-1.010152;
 2.1224*(z(1)*(z(1)*z(2)*z(4)+z(1)*z(1)*z(3)*sin(2.1224*z(4))*sin(2.1224*z(4))+z(2)*z(2)*z(3)*cos(2.1224*z(4))*cos(2.1224*z(4)))/(2*power((z(1)*cos(2.1224*z(3))*sin(z(3))),2)))-1.0101626];
To solve these the fsolve() function in the optimization toolbox is used. The following commands have to be typed on to the prompt.

```matlab
Z = [45; 45; .9; .9];           % Make a starting guess at the solution
options=optimset('Display','iter');   % Option to display output
[x,fval] = fsolve(@myfun,z,options)  % Call optimizer
```

This gives the solution with limits specified in 'optimset' structure.