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Optimal Timer Based Selection Schemes
Virag Shah, Neelesh B. Mehta, Senior Member, IEEE, and Raymond Yim, Member, IEEE

Abstract—Timer-based mechanisms are often used to help a
given (sink) node select the best helper node from among many
available nodes. In these, a node transmits a packet when its
timer expires. The timer value is a monotone non-increasing
function of its local suitability metric, which ensures that the
best node is the first to transmit and is selected successfully if no
other node’s timer expires within a ‘vulnerability’ window after
its timer expiry and so long as the sink can hear the available
nodes. In this paper, we show that the optimal metric-to-timer
mapping that (i) maximizes the probability of successful selection
or (ii) minimizes the average selection time subject to a minimum
constraint on the probability of success, maps the metric into a set
of discrete timer values. We specify, in closed-form, the optimal
scheme as a function of the maximum selection duration, the
vulnerability window, and the number of nodes. An asymptotic
characterization of the optimal scheme turns out to be elegant
and insightful. For any probability distribution function of the
metric, the optimal scheme is scalable, distributed, and performs
much better than the popular inverse metric timer mapping. It
even compares favorably with splitting-based selection, when the
latter’s feedback overhead is accounted for.

Index Terms—Selection, timer, cooperative communications,
spatial diversity, multiuser diversity, multiple access, relays,
VANET.

I. INTRODUCTION

MANY wireless communication schemes benefit by se-
lecting the ‘best’ node from the many available can-

didate nodes and then using it for data transmission. For
example, cooperative communication systems exploit spatial
diversity and avoid synchronization problems among relays by
selecting the relay that is best suited to forward the source’s
message to the destination [1]–[8]. Cellular systems exploit
spatial diversity by making the base station transmit to (or
receive from) the mobile station that has the highest instanta-
neous channel gain from (or to) the base station. Fairness is en-
sured by selecting on the basis of the channel gain divided by
the average throughput or average energy consumed [9], [10].
In sensor networks, node selection helps increase network
lifetime [7], [11]. In vehicular ad-hoc networks (VANETs),
vehicle selection improves the speed of information dissem-
ination by ensuring that the vehicles that rebroadcast the
emergency broadcast message are far away from the source of
the message [12], [13]. In some of these systems, a base station
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or access point (which we shall generically refer to as a ‘sink’)
can help the selection process by hearing transmissions from
candidate nodes and sending feedback. On the other hand, in
the emergency broadcast scenario in VANETs, coordination
issues make explicit feedback from a sink infeasible.

The mechanism that physically selects the best node is,
therefore, an important component in many wireless systems.
In all the above systems, each node maintains a local suitabil-
ity metric, and the system attempts to select the node with the
highest metric. In [14], an inverse metric timer-based scheme
was proposed, in which a node with metric 𝜇 sets its timer as
𝑐/𝜇, where 𝑐 is a constant, and transmits a packet when its
timer expires. This simple solution ensures that the first node
that transmits is the best node. In [2], nodes with channel
gains above 𝜇𝑢 transmit at time 0, while those with channel
gains below 𝜇𝑙 transmit at time 𝑇max. In the interval [𝜇𝑙, 𝜇𝑢),
the mapping is linearly decreasing. In general, to ensure that
the best node transmits first, the mapping is a deterministic
monotone non-increasing function [2], [14].

The timer-based selection mechanism is attractive because
of its simplicity and its distributed nature. It requires no
feedback during the selection process. A node only needs to
include its identity in the packet that it transmits upon timer
expiry. A sink, if present, only needs to broadcast a single
message at the end of the selection process indicating success
or failure. Depending on the application, the sink may also
broadcast in the message the identity of the relay has been
selected. Consequently, timer-based selection has been used in
several systems such as cooperative relaying to find the best re-
lay node [3], [14], wireless network coding [15] to find the best
relays that will combine the signals transmitted by multiple
sources, mobile multi-hop networks [8], VANETs [12], [13]
to determine which vehicle should rebroadcast an emergency
message, wireless LANs [4] to enable opportunistic channel
access, and sensor networks [2], [5]. It is different from
the centralized polling mechanism, in which the sink node
polls each node about its metric and then chooses the best
one. It also differs from the time-slotted distributed splitting
algorithms [16], [17] that also ensure that the first packet
that the sink successfully decodes is from the best node. The
difference lies in the extensive slot-by-slot three-state (idle,
collision, or success) feedback of the splitting algorithm that
controls which nodes transmit in the next slot.

The timer scheme works by ensuring that the best node
transmits first. However, for successful selection in practical
systems, it is necessary that no other timer expires within
a time window of the expiry of the best node’s timer. This
time window, called the vulnerability window [18], will be
explained in detail in the next section. Selection failure occurs
when two or more packets collide at the receiver and become
indecipherable, or unequal node-to-sink propagation delays
cause a packet from the best node to not arrive first at
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the receiver. One can decrease failure rate by increasing the
maximum selection duration, 𝑇max. However, the latter is not
desirable because it reduces the time available to the selected
node to transmit data. If the metrics depend on instantaneous
channel fading gains, such an increase also reduces the ability
of the system to handle larger Doppler spreads.

In this paper, we consider the general timer scheme in which
the metric-to-timer function is monotone non-increasing. In
contrast to the ad hoc mappings used in the literature, we de-
termine the optimal mapping that maximizes the probability of
success or minimizes the expected time required for selection
subject to a minimum constraint on the probability of success.
The former is relevant in systems that reserve a fixed amount
of time for selection, e.g., [19], while the latter is relevant in
systems that use the best node as soon as it is selected.

The specific contributions of the paper are the following. We
provide a full recursive characterization of the optimal metric-
to-timer mapping function, and show that it is amenable to
practical implementation. We show that optimal timer schemes
for the two previously stated problems set the timer expiry at
only a finite number of points in time. That is, the optimal
timer values are discrete. The number of points depends
on the maximum allowed time for selection, 𝑇max, and the
vulnerability window. In the asymptotic regime, in which the
number of nodes, 𝑘, is large, we show that the description of
the optimal scheme and its analysis simplifies remarkably, and
takes an elegant and simple recursive form. The asymptotic
regime turns out to be a good approximation even for 𝑘 as
small as 5. Our results hold for all real-valued metrics with
arbitrary probability distribution functions.

Compared to the inverse metric mapping, we show that
the probability that the system fails to select the best node
can often be substantially decreased by at least a factor of 2
for the same maximum selection duration. And, for a given
probability of success, the average number of slots of the
optimal scheme is less by a factor of two or more than that
of the inverse timer scheme. We also show that the optimal
timer scheme is scalable in that its performance does not
catastrophically degrade as the number of nodes increases.

The paper is organized as follows. The system model and
the general timer-based selection scheme are described in
Sec. II. The optimal schemes are derived and analyzed in
Sec. III and IV. Section V presents numerical simulations and
compares with previously proposed schemes, and is followed
by our conclusions in Sec. VI. Mathematical proofs are
relegated to the Appendix.

II. TIMER-BASED SELECTION: SYSTEM MODEL AND

BASICS

We consider a system with 𝑘 nodes and a sink as shown in
Figure 1. The sink represents any node that is interested in the
message transmitted by the 𝑘 nodes; it need not conduct any
coordinating role. Each node 𝑖 possesses a suitability metric
𝜇𝑖 that is known only to that specific node. The metrics are
assumed to be independent and identically distributed across
nodes. The probability distribution is assumed to be known by
all nodes. The aim of the selection scheme is to make the sink
determine which node has the highest 𝜇𝑖, henceforth called the
‘best’ node.

Sink
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Fig. 1. A system consisting of a sink and 𝑘 nodes. Each node has a metric
𝜇𝑖 and sets its timer as 𝑇𝑖 = 𝑓(𝜇𝑖). The sink needs to select the node with
the highest metric.

Each node 𝑖, based on its local metric 𝜇𝑖, sets a timer
𝑇𝑖 = 𝑓(𝜇𝑖), where 𝑓(.) is called the metric-to-timer function.
When the timer expires (at time 𝑇𝑖), the node immediately
transmits a packet to the sink. The packet may contain the
identity of the node along with other system-specific informa-
tion. As mentioned, the timer-based selection scheme always
ensures that the timer of a node with a larger metric expires no
later than that of a node with a smaller metric. Consequently,
𝑓(𝜇), in general, is a monotone non-increasing function. The
selection process has a maximum selection duration 𝑇max,
after which nodes do not start a transmission.

For the sink to successfully decode the packet sent by the
best node, the start time of any other packet must not be
earlier than the start time of the packet of the best node
plus a vulnerability window Δ. Thus, the sink can decode the
packet from the best node, if the timers of the best and second
best node, denoted by 𝑇(1) and 𝑇(2), respectively, expire such
that 𝑇(2) − 𝑇(1) ≥ Δ. The expiry of timers of other nodes,
which occurs after 𝑇(2), does not matter since the sink is only
interested in the best node.

The value of Δ depends on system capabilities. For ex-
ample, Δ typically includes the maximum propagation and
detection delays between all nodes. Δ may also include the
maximum transmission time of packets in case carrier sensing
is not used, in which case the nodes do not need to overhear
other transmissions. Carrier sensing, which is commonly used
today, reduces Δ because a node, when its timer expires,
will overhear transmissions and does not transmit if it senses
another transmission. Note, however, that the timer scheme
works with or without carrier sensing. For a system with
half-duplex nodes, Δ may also include the receive-to-transmit
switching time.

Henceforth, we will abuse the above general definition of
Δ and instead say that a collision occurs when the timers of
the best and the second best nodes expire within a duration
Δ. Thus, the best node is selected successfully if: (i) the timer
value of the best node, 𝑇(1), is smaller than or equal to 𝑇max,
and (ii) the transmission from the best node does not suffer
from a collision. Otherwise, the selection process fails. The
selection process stops at 𝑇(1) or 𝑇max, whichever is earlier.

In this paper, the inability to select the best node is treated
as a failure or an outage. In fact, if a sink is available, it may
respond to a selection failure in multiple ways. For example,
it may use extra feedback to resolve the nodes whose packets
collided during the selection process. If a sink is not available,
then transmission schemes based on repetition can be used
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to improve the overall reliability of broadcast messages. The
details of how the system deals with a selection failure are
beyond the scope of this paper.

To study the performance of selection schemes, we measure
the probability of successful selection and the expected stop
time of the selection scheme. These are clearly relevant to all
systems that use selection. They motivate the following two
different schemes to optimize the metric-to-timer mapping:

1) Scheme 1: Maximize the probability of success given
a maximum selection duration of 𝑇max and the number
of nodes 𝑘.

2) Scheme 2: Minimize the expected selection time given
a maximum selection duration of 𝑇max, such that the
probability of success is at least 𝜂 when 𝑘 nodes are
present.

A minimum requirement on the success probability is needed
in the second scheme because otherwise a trivial scheme that
makes each of its nodes set its timer to 0 would be optimal.
This is undesirable because the probability of success of such
a scheme is zero when 𝑘 ≥ 2.

We assume that all nodes know 𝑘, as is also assumed in
the splitting approach in [16], [17]. This can be achieved, for
example, by making the sink broadcast 𝑘 occasionally. The
burden of this feedback is not significant since 𝑘 typically
varies on a much slower time scale than, for example, the in-
stantaneous channel fades. Even when the sink is not available,
nodes can estimate 𝑘 by overhearing packet transmissions in
the network.

To keep notation simple, we first consider the case where
the metrics are uniformly distributed over the interval [0, 1).
Thereafter, the results are generalized to all real-valued metrics
with arbitrary probability distribution functions.

Notation: Floor and ceil operations are denoted by ⌊.⌋
and ⌈.⌉, respectively. E [𝑋 ] denotes the expected value of a
random variable (RV) 𝑋 . Using order statistics notation [20,
Chp. 1], the node with the 𝑖th largest metric is denoted
by (𝑖). Consequently, 𝜇(1) ≥ 𝜇(2) ≥ ⋅ ⋅ ⋅ ≥ 𝜇(𝑘) and
𝑇(1) ≤ ⋅ ⋅ ⋅ ≤ 𝑇(𝑘). For notational convenience, the summation∑𝑙2

𝑙=𝑙1
equals 0 whenever 𝑙1 > 𝑙2. We use the superscript ∗ to

denote an optimal value; for example, optimal value of 𝑥 is
𝑥∗. Pr (𝐴) denotes the probability of an event 𝐴, and Pr (𝐴∣𝐵)
denotes the conditional probability of 𝐴 given 𝐵.

III. SCHEME 1: MAXIMIZING THE PROBABILITY OF

SUCCESS GIVEN 𝑇max

The goal here is to find an optimal mapping 𝑓∗(𝜇) in the
space of all monotone non-increasing functions 𝑓 : [0, 1) →
ℝ

+ that maximizes the probability of success. The following
lemma shows that an optimal 𝑓∗(𝜇) maps the metrics into
discrete timer values. Let 𝑁 =

⌊
𝑇max

Δ

⌋
.

Lemma 1: An optimal metric-to-timer mapping 𝑓∗(𝜇) that
maximizes the probability of success within a maximum
time 𝑇max maps 𝜇 into (𝑁 + 1) discrete timer values
{0,Δ, 2Δ, . . . , 𝑁Δ}.

Proof: The proof is given in Appendix A.
The discreteness result is intuitively in sync with the fact

that time slotted multiple access protocols are better than
unslotted ones in terms of throughput. However, there is a

1
𝛼𝑁 [0]𝛼𝑁 [1]𝛼𝑁 [2]𝛼𝑁 [𝑁 − 1]𝛼𝑁 [𝑁 ]

(𝑁 − 1)Δ

𝑇max

2Δ

Δ

0

𝑁Δ

𝑓(𝜇)

𝜇

0

Fig. 2. Illustration of the optimal metric-to-timer mapping 𝑓∗(𝜇). A user
with metric in the interval [1 − 𝛼𝑁 [0], 1) transmits at time 0, a user with
metric in the interval [1 − 𝛼𝑁 [0] − 𝛼𝑁 [1], 1 − 𝛼𝑁 [0]) transmits at time
Δ, and so on. A user whose metric is less than 1 − ∑𝑁

𝑖=0 𝛼𝑁 [𝑖] does not
transmit.

fundamental distinction between our selection problem and the
multiple access problem. While slotting is better in multiple
access protocols because it reduces the vulnerability window,
in our problem the vulnerability window remains unchanged.

Note that the above discrete mapping, while optimal, need
not be unique. For example, when 𝑁Δ < 𝑇max, the highest
timer value can be increased beyond 𝑁Δ without affecting the
probability of success. Also, any increase in the discrete timer
values that ensures that there are (𝑁+1) of them below 𝑇max

and are spaced at least Δ apart, achieves the same probability
of success. Note also that the timer-based scheme is different
from the oft-employed RTS/CTS handshaking scheme, which
addresses the hidden terminal problem that may arise after the
sink receives the RTS packet successfully. In fact, the timer
scheme may even be used in the RTS back-off procedure to
increase the success rate of RTS packet reception.

Implications of Lemma 1: We have reduced an infinite-
dimensional problem of finding 𝑓(𝜇) over the space of all
positive-valued monotone non-increasing functions to one
over 𝑁 + 1 real values that lie between 0 and 𝑇max, as
illustrated in Figure 2. To completely characterize the optimal
timer scheme, all we need to specify are the contiguous
metric intervals in [0, 1) that get assigned to the timer val-
ues 0,Δ, . . . , 𝑁Δ. As shown in Figure 2, all nodes with
metrics in the interval [1 − 𝛼𝑁 [0], 1), of length 𝛼𝑁 [0], set
their timers to 0. Nodes with metrics in the next interval
[1− 𝛼𝑁 [1]− 𝛼𝑁 [0], 1− 𝛼𝑁 [0]), of length 𝛼𝑁 [1], set their
timers to Δ, and so on. In general, nodes with metrics in
the interval

[
1−∑𝑖

𝑗=0 𝛼𝑁 [𝑗], 1−∑𝑖−1
𝑗=0 𝛼𝑁 [𝑗]

)
, of length

𝛼𝑁 [𝑖], set their timer to 𝑖Δ. Any node with metric less
than 1−∑𝑁

𝑗=0 𝛼𝑁 [𝑗] does not transmit at all. Therefore,
the probability of success is entirely a function of 𝑁 ,
𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ], and the number of nodes 𝑘. To keep the
notation simple, we shall not explicitly show in the notation
its dependency on 𝑘.

We now determine the optimal 𝛼∗
𝑁 [𝑗] and fully characterize

the optimal scheme.

Theorem 1: The probability of success in selecting the best
node among 𝑘 nodes, subject to a maximum selection duration
of 𝑇max, is maximized when the timer of a node with metric
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𝜇 is set as

𝑓∗(𝜇)

=

⎧⎨
⎩
𝑖Δ, 1−∑𝑖

𝑗=0 𝛼
∗
𝑁 [𝑗] ≤ 𝜇 < 1−∑𝑖−1

𝑗=0 𝛼
∗
𝑁 [𝑗],

for 0 ≤ 𝑖 ≤ 𝑁
𝑇max + 𝜖, otherwise

,

(1)

where 𝑁 =
⌊
𝑇max

Δ

⌋
and 𝜖 is any arbitrary, strictly positive

real number. The 𝑁 + 1 interval lengths 𝛼∗
𝑁 [0], . . . , 𝛼∗

𝑁 [𝑁 ]
are recursively given by

𝛼∗
𝑁 [𝑗] =

{
1−𝑃∗

𝑁−1

𝑘−𝑃∗
𝑁−1

, 𝑗 = 0

(1− 𝛼∗
𝑁 [0])𝛼∗

𝑁−1[𝑗 − 1], 1 ≤ 𝑗 ≤ 𝑁
, (2)

where 𝛼∗
0[0] = 1/𝑘. 𝑃 ∗

𝑁 is the maximum probability of success
that equals

𝑃 ∗
𝑁 = 𝑘

𝑁∑
𝑙=0

𝛼∗
𝑁 [𝑙]

⎛
⎝1−

𝑙∑
𝑗=0

𝛼∗
𝑁 [𝑗]

⎞
⎠

𝑘−1

. (3)

Proof: The proof is given in Appendix B.
The discrete nature of the optimal scheme also makes

it amenable to practical implementation. Each node only
needs to store an unwrapped version of the above recur-
sion in the form of a lookup table that has 𝑁 + 1 entries
{𝛼∗

𝑁 [0], . . . , 𝛼∗
𝑁 [𝑁 ]}. The entries are a function of 𝑘. All a

node does is to determine the interval its metric lies in and
set its timer accordingly.

A. Asymptotic Analysis as 𝑘 → ∞ Given 𝑁

We now provide asymptotic expressions for the optimal
timer scheme as the number of nodes 𝑘 → ∞. The maximum
selection duration, 𝑇max, or equivalently 𝑁 , is kept fixed. As
we shall see, the recursions simplify to a simple and elegant
form because a scaled version of the metric follows a Poisson
process [21]. The asymptotic expressions are also relevant
practically because, as we shall see, they approximate well
the optimal solution of Theorem 1 for 𝑘 as small as 5.

From (2), it can be seen that 𝛼∗
𝑁 [𝑗] tends to zero as 𝑘 → ∞.

Therefore, for node 𝑖, consider a scaled metric 𝑦𝑖 = 𝑘(1−𝜇𝑖),
and normalize the interval lengths to

𝛽∗
𝑁 [𝑗] = 𝑘𝛼∗

𝑁 [𝑗]. (4)

Thus, selecting a node with highest 𝜇𝑖 is equivalent to select-
ing the node with the lowest 𝑦𝑖. Let 𝑦(1) ≤ 𝑦(2) ≤ ⋅ ⋅ ⋅ ≤ 𝑦(𝑘).
Define the point process 𝑀(𝑧) ≜ sup

{
𝑘 ≥ 1 : 𝑦(𝑘) ≤ 𝑧

}
.

𝑀(𝑧) is simply the number of nodes whose 𝑦𝑖 = 𝑘(1 − 𝜇𝑖)
is less than 𝑧.

Lemma 2: The process 𝑀(𝑧) forms a Poisson process as
𝑘 → ∞.

Proof: {𝑦𝑖}𝑘𝑖=1 are uniformly and identically distributed

in (0, 𝑘]. Thus, Pr (𝑀(𝑧) = 𝑙) =
(
𝑘
𝑙

) (
𝑧
𝑘

)𝑙 (
1− 𝑧

𝑘

)(𝑘−𝑙)
, for

0 ≤ 𝑙 ≤ 𝑙, and tends to 𝑒−𝑧 𝑧𝑙

𝑙! as 𝑘 → ∞. Thus, it follows
from [21, Chp. 2] that 𝑀(𝑧) forms a Poisson process with
rate 1 as 𝑘 → ∞.
This result enables the use of the independent increments
property of Poisson processes [21, Chp. 2]. Simply stated, the

property says that the number of points that occur in disjoint
intervals are independent of each other. We use it below to
determine the optimal 𝛽∗

𝑁 [𝑗].
Theorem 2: The optimal 𝛽∗

𝑁 [𝑗] that maximize the proba-
bility of success are given by

𝛽∗
𝑁 [𝑗] =

{
1, 𝑗 = 𝑁

1− 𝑒−𝛽∗
𝑁 [𝑗+1], 0 ≤ 𝑗 ≤ 𝑁 − 1

. (5)

Also, the probability of success of the optimal scheme is
𝑃 ∗
𝑁 = 𝑒−𝛽∗

𝑁 [0].
Proof: The proof is given in Appendix C.

Theorem 2 leads to the following key insights about the
optimal timer scheme.

Corollary 1 (Scalability): As 𝑘 → ∞, the probability of
success of the optimal scheme for any 𝑇max is greater than or
equal to 1/𝑒, with equality occurring only for 𝑁 = 0.

Proof: This follows from the recursion in (5) because
𝛽∗
0 [0] = 1, and 𝛽∗

𝑁 [0] ≤ 1.
Corollary 2 (Monotonicity): 𝛽∗

𝑁 [0] < 𝛽∗
𝑁 [1] < ⋅ ⋅ ⋅ <

𝛽∗
𝑁 [𝑁 ].

Proof: The result follows from (5) and the inequality 1−
𝑒−𝑥 < 𝑥, for 𝑥 > 0.
This result reflects a behavior typical of finite horizon dynamic
programming problems. In our problem, selection at a discrete
time value does not happen when either a collision occurs
or the best node does not transmit. As the time available
decreases, the risk of selection failure due to the best node
not transmitting increases. To counteract this, the monotonicity
property makes the optimal scheme take on a higher risk of
collision.

Corollary 3 (Independence): 𝛽∗
𝑁 [𝑁 − 𝑟] depends only on

𝑟, and is independent of 𝑁 .
Proof: Since 𝛽∗

𝑁 [𝑁 ] = 𝛽∗
𝑁−1[𝑁 − 1] = 1, it follows

from (5) that 𝛽∗
𝑁 [𝑗] = 𝛽∗

𝑁−1[𝑗 − 1], for 𝑗 ≥ 1. This also
follows from the independent increments property: given that
no node exists with 𝑦𝑖 ∈ (0, 𝛽∗

𝑁 [0]], 𝑀(𝑧+ 𝛽∗
𝑁 [0]) is a rate 1

Poisson process, and time (𝑁 − 1)Δ is left to select the best
node. By arguing successively, we get 𝛽∗

𝑁 [𝑗] = 𝛽∗
𝑁−𝑙[𝑗 − 𝑙]

for 𝑗 ≥ 𝑙.

IV. SCHEME 2: MINIMIZING THE EXPECTED SELECTION

TIME

Our aim now is to minimize the expected selection time,
Γ𝑁 , subject to the constraint that the probability of success,
𝑃𝑁 , exceeds 𝜂.1 Formally, the constrained optimization prob-
lem is:

min
𝑓(𝜇):[0,1)→ℝ+

Γ𝑁 subject to 𝑃𝑁 ≥ 𝜂. (6)

Feasibility of Solution: For a given 𝑇max, a solution to the
problem above exists if and only if 𝜂 is less than or equal to the
optimum probability of success for Scheme 1. This is because
Scheme 1, by definition, achieves the highest probability of
success given 𝑇max. Henceforth, we shall assume that the
solution is feasible. The following Lemma shows that the
optimal mapping 𝑓∗(𝜇) for this problem also is discrete.

1The inclusion of the subscript 𝑁 in the symbol for probability of success
will be become clear from Lemma 3. This is done to keep the notation
consistent throughout the paper.
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Lemma 3: The optimal metric-to-timer mapping 𝑓∗(𝜇)
that minimizes the expected selection time subject to a
minimum probability of success constraint, 𝜂, maps 𝜇 into
(𝑁 + 1) discrete timer values {0,Δ, 2Δ, . . . , 𝑁Δ}, where
𝑁 =

⌊
𝑇max

Δ

⌋
.

Proof: The proof is given in Appendix D.
Hence, to determine the optimal mapping, it is suffi-

cient to look at mappings defined by the 𝑁 + 1 variables
𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ], where a node with metric in the interval
[1 − 𝛼𝑁 [0], 0) sets its timer to 0, and a node with metric in
the interval [1−𝛼𝑁 [1]−𝛼𝑁 [0], 1−𝛼𝑁 [0]) set its timer to Δ,
and so on, as illustrated in Figure 2. In general, a node with
metric in the interval [1−∑𝑖

𝑗=0 𝛼𝑁 [𝑗], 1−∑𝑖−1
𝑗=0 𝛼𝑁 [𝑗]), of

length 𝛼𝑁 [𝑖], set its timer to 𝑖Δ. A node whose metric is less
than 1−∑𝑁

𝑗=0 𝛼𝑁 [𝑗] does not transmit at all.
Consider the minimization of an auxiliary function 𝐿𝜆

𝑁 ≜
Γ𝑁 − 𝜆𝑃𝑁 , for a given 𝜆 ≥ 0. We now show that the
solution that minimizes 𝐿𝜆

𝑁 is the solution of the optimization
problem in (6), and that the inequality becomes an equality.
Let 𝑓𝜆∗(𝜇) be the mapping with the lowest value of the
auxiliary function for a given 𝜆. Let its probability of success
and expected selection time be 𝑃𝜆∗

𝑁 and Γ𝜆∗
𝑁 , respectively.

Consider any other feasible scheme 𝑓 ′(𝜇) with corresponding
probability of success 𝑃 ′

𝑁 and expected selection time Γ′
𝑁 .

Therefore, Γ′
𝑁 − 𝜆𝑃 ′

𝑁 ≥ Γ𝜆∗
𝑁 − 𝜆𝑃𝜆∗

𝑁 . If 𝑃 ′
𝑁 ≥ 𝑃𝜆∗

𝑁 , then
Γ𝜆∗
𝑁 ≤ Γ′

𝑁 − 𝜆
(
𝑃 ′
𝑁 − 𝑃𝜆∗

𝑁

) ≤ Γ′
𝑁 since 𝜆 ≥ 0. Therefore,

the expected selection time of 𝑓𝜆∗(𝜇) is the lowest among
all timer mappings for which 𝑃 ′

𝑁 ≥ 𝑃𝜆∗
𝑁 . Consequently, if

we choose 𝜆 such that 𝑃𝜆∗
𝑁 = 𝜂, then the resulting mapping

𝑓𝜆∗(𝜇) is the solution of (6).
The following theorem specifies the optimal timer scheme

as a function of 𝜆.
Theorem 3: Given 𝜆 ≥ 0, the auxiliary function 𝐿𝜆

𝑁 is
minimized when a node with metric 𝜇 sets its timer as 𝑓∗(𝜇),
where

𝑓∗(𝜇)

=

⎧⎨
⎩

𝑖Δ, 1−∑𝑖
𝑗=0 𝛼

∗
𝑁 [𝑗] ≤ 𝜇 < 1−∑𝑖−1

𝑗=0 𝛼
∗
𝑁 [𝑗],

for 0 ≤ 𝑖 ≤ 𝑁
𝑇max + 𝜖, otherwise

,

(7)

where 𝑁 =
⌊
𝑇max

Δ

⌋
and 𝜖 is an arbitrary positive real number.

𝛼∗
𝑁 [0], . . . , 𝛼∗

𝑁 [𝑁 ] are recursively given by

𝛼∗
𝑁 [𝑗] =

{
1+ 𝜆

Δ− 𝜆
Δ𝐿∗𝜆

𝑁−1

1+ 𝜆
Δ𝑘− 𝜆

Δ𝐿∗𝜆
𝑁−1

, 𝑗 = 0

(1− 𝛼∗
𝑁 [0])𝛼∗

𝑁−1[𝑗 − 1], 1 ≤ 𝑗 ≤ 𝑁
, (8)

and 𝛼∗
0[0] = 1/𝑘. 𝐿∗𝜆

𝑁 is the minimum value of the auxiliary
function that equals

𝐿∗𝜆
𝑁 = Δ

𝑁−1∑
𝑙=0

⎛
⎝1−

𝑙∑
𝑗=0

𝛼∗
𝑁 [𝑗]

⎞
⎠

𝑘

− 𝜆𝑘

𝑁∑
𝑙=0

𝛼∗
𝑁 [𝑙]

⎛
⎝1−

𝑙∑
𝑗=0

𝛼∗
𝑁 [𝑗]

⎞
⎠

𝑘−1

. (9)

Proof: The proof is given in Appendix E.

Note that as 𝜆/Δ → ∞, 𝛼∗
𝑁 [𝑗] tends to the corresponding

optimal value for Scheme 1. This is intuitive because, for large
𝜆, minimizing 𝐿𝜆

𝑁 is equivalent to maximizing 𝑃𝑁 . Notice
also that 𝛼∗

𝑁 [𝑗] and 𝑃 ∗
𝑁 depend on 𝜆 only through the term

𝜆/Δ. Thus, as expected, the optimal solution, 𝛼∗
𝑁 [𝑗], for the

constrained problem in (6) does not depend on Δ for a given
𝑁 ; scaling Δ will accordingly scale the value of 𝜆 to ensure
𝑃 ∗
𝑁 = 𝜂.

A. Asymptotic Behavior as 𝑘 → ∞ Given 𝑁

We now develop an asymptotic analysis of the optimal timer
scheme when 𝑘 → ∞. Define the normalized interval lengths:
𝛽∗
𝑁 [𝑗] = 𝑘𝛼∗

𝑁 [𝑗], for 𝑗 = 0, . . . , 𝑁 . Then, the optimal 𝛽∗
𝑁 [𝑗]

are as follows.
Theorem 4: Given 𝜆 ≥ 0, the optimal values 𝛽∗

𝑁 [𝑗] that
minimize the auxiliary function are given by the recursion

𝛽∗
𝑁 [𝑗] =

{
1, 𝑗 = 𝑁

1− 𝑒−𝛽𝑁 [𝑗+1] +Δ/𝜆, 0 ≤ 𝑗 ≤ 𝑁 − 1
. (10)

The optimum probability of success in the asymptotic regime
is 𝑃 ∗

𝑁 =
∑𝑁

𝑙=0 𝛽
∗
𝑁 [𝑙]𝑒−

∑𝑙
𝑗=0 𝛽∗

𝑁 [𝑗], and the expected selection
time is Γ∗

𝑁 = Δ
∑𝑁−1

𝑙=0 𝑒−
∑𝑙

𝑗=0 𝛽∗
𝑁 [𝑗].

Proof: The proof is given in Appendix F. It also
uses Lemma 2, which showed that the point process
𝑀(𝑧) = sup

{
𝑘 ≥ 1 : 𝑦(𝑘) ≤ 𝑧

}
is a Poisson process with rate

1 as 𝑘 → ∞. Recall that 𝑦𝑖 = 𝑘(1 − 𝜇𝑖) and 𝑦(𝑎) ≤ 𝑦(𝑏), for
𝑎 ≤ 𝑏.

For both the schemes, we have 𝛽∗
𝑁 [𝑁 ] = 1. However,

𝛽∗
𝑁 [𝑗], for 0 ≤ 𝑗 < 𝑁 , for Scheme 2 is always greater than or

equal to that for Scheme 1. This is because of the additional
Δ/𝜆 term in (10), which increases 𝛽∗

𝑁 [𝑗]. By decreasing 𝜆, the
expected selection time decreases and so does the probability
of success. For a given 𝜆, it can be verified that 𝛽∗

𝑁 [𝑗] satisfy
the Independence property described in Sec. III for Scheme
1.

B. Generalization to Real-Valued Metrics with Arbitrary
Probability Distributions

We now generalize the optimal solutions of Schemes 1
and 2 to the general case where the metric is not uniformly
distributed. Let the cumulative distribution function (CDF)
of a metric be denoted by 𝐹𝑐(𝑥) = Pr (𝜇 ≤ 𝑥), where
−∞ < 𝑥 < ∞.

The optimum mapping when the CDF of the metric is 𝐹𝑐(.)
is 𝑓∗(𝐹𝑐(𝜇)), where 𝑓∗(.) is given by Theorem 2 for Scheme 1
and by Theorem 3 for Scheme 2. This follows because 𝐹𝑐(.)
is a monotonically non-decreasing function, and the random
variable 𝑌 = 𝐹𝑐(𝜇) is uniformly distributed between 0 and
1.2 The problem has, therefore, been reduced to the one
considered earlier. This also shows that the performance for
the optimal mapping for the two schemes does not depend on
𝐹𝑐(.). Note here that we assume that the nodes know 𝐹𝑐(.).
This is also assumed in the splitting approaches [16], [17].

2The CDF needs to be continuous to ensure this. The case where the CDF is
not continuous can be easily handled by a technique analogous to proportional
expansion that was proposed in [22] for splitting algorithms. In it, each node
generates a new continuous metric such that at least one of the nodes with
the highest metric still remains the best node.
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Fig. 3. Scheme 1: Optimum 𝑃 ∗
𝑁 as a function of 𝑇max

Δ
. Also, plotted is

the probability of success of the inverse metric mapping (𝑘 = 5) when 𝑐 is
optimized and when 𝑐 is kept fixed.

Practically, this is justified because 𝐹𝑐(.), being a statistical
property, can be computed over time.

V. RESULTS AND PERFORMANCE EVALUATION

We now study the structure and performance of the optimum
timer schemes. We also compare them with the popular inverse
metric timer mapping that uses 𝑓(𝜇) = 𝑐/𝜇 [3], [5], [14],
[15].3 In order to ensure a fair comparison with Schemes 1
and 2, for each 𝑇max and 𝑘, 𝑐 is numerically optimized to
maximize the probability of success for Scheme 1 or minimize
the expected selection time for Scheme 2. Unlike the optimal
timer scheme, the performance of the inverse metric mapping
clearly depends on the probability distribution of the metric.
For this, we shall consider a unit mean Rayleigh distribution
(with CDF 𝐹𝑐(𝜇) = 1 − 𝑒−𝜇2/2), which characterizes the
receive power distribution in wireless channel, and a unit mean
exponential distribution (with CDF 𝐹𝑐(𝜇) = 1− 𝑒−𝜇), which
is simply the square of a Rayleigh RV.

Figure 3 plots the maximum probability of success of
Scheme 1 (𝑃 ∗

𝑁 ) as a function of 𝑁 . Also plotted are results
from Monte Carlo simulations, which match well with the
analytical results. It can be seen that the asymptotic curve is
close to the actual curve for 𝑘 ≥ 5. The asymptotic curve
shows a rather remarkable result: regardless of 𝑘 and without
the use of any feedback, the best node gets selected with a
probability of over 75% when 𝑁 is just 5. When 𝑁 increases
to 17, the success probability exceeds 90%!

We also see that the optimal scheme significantly outper-
forms the inverse metric mapping, despite the latter’s param-
eters being optimized. For example, for 𝑁 = 10 and 𝑁 = 30,
the probability that the system fails to select the best node
for the inverse timer scheme is respectively 2.3 and 2.5 times
greater than that of the optimum scheme for the exponential
CDF. The factors increase to 2.9 and 3.2 for the Rayleigh CDF.
Thus, even though the exponential RV is the square of the

3A fair comparison with the piece-wise linear mapping of [2] is not feasible
since its performance needs to be numerically optimized over at least 2
parameters.

0 1 2 3 4 5 6 7 8 9 10
0

0.02

0.04

0.06

0.08

0.1

0.12

j

α* N
[j]

 

 

k=3
k=5
k=10
k=20

Fig. 4. Scheme 1: Optimum 𝛼∗
𝑁 [𝑗] as a function of 𝑗 and the number of

nodes, 𝑘, for 𝑁 = 10.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

35

Constraint on probability of success (η)

E
xp

ec
te

d 
se

le
ct

io
n 

tim
e

 

 

Optimal Scheme
Inverse Timer Scheme: Exponential CDF
Inverse Timer Scheme: Rayleigh CDF

Fig. 5. Scheme 2: Optimum expected selection time as a function of
constraint on probability of success (𝑃𝑁 ≤ 𝜂) for 𝑇max = 100Δ and
𝑘 = 5. Also plotted is the selection time of the inverse metric mapping.

Rayleigh RV and the squaring operation preserves the metric
order, the performance of the inverse timer scheme changes.

The structure of the optimal Scheme 1 is studied in Figure 4,
which plots 𝛼∗

𝑁 [𝑗] for 𝑁 = 10 when the metric is uniformly
distributed between 0 and 1. (The parameters for arbitrary
distributions can be obtained using Sec. IV-B.) We see that
𝛼∗
𝑁 [𝑗] increases with 𝑗, which is in line with the asymptotic

monotonicity property of Corollary 2.
Figure 5 considers Scheme 2 and plots the optimal expected

selection time as a function of the constraint on the probability
of success 𝜂 for 𝑁 = 100. We again see a good match
between the analytical results and the results from Monte
Carlo simulations. As in Scheme 1, the optimal scheme sig-
nificantly outperforms the optimized inverse metric mapping.
For example, for 𝜂 = 0.7 and 𝑘 = 5, the optimal scheme
is 5.1 and 9.6 times faster than the optimized inverse metric
mapping for the exponential and Rayleigh CDFs, respectively.
We again observe that the inverse metric mapping is sensitive
to the metric’s probability distribution.

We now study the structure of the optimal Scheme 2.
Figure 6 shows the effect of the minimum success probability,
𝜂, on 𝛼∗

𝑁 [𝑗] when 𝑁 = 10 and 𝑘 = 5. When 𝜂 is low,
the optimal timer scheme becomes faster by tolerating a
higher degree of selection failure. It maps relatively large
intervals into small timer values, and is very aggressive in
the beginning. Also, only a small fraction of nodes do not
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TABLE I
COMPARISON OF THE OPTIMAL TIMER BASED SCHEME 2 AND THE

SPLITTING SCHEME

𝑇max Optimal Timer Scheme Splitting

288 𝜇s 𝑃𝑁 0.75 0.85 0.90 0.98 0.63
Γ𝑁 (𝜇s) 17.8 35.0 58.3 – 233.3

1296 𝜇s
𝑃𝑁 0.75 0.85 0.90 0.98 0.99

Γ𝑁 (𝜇s) 17.7 34.9 56.4 369.2 354.4

transmit before 𝑇max. For example, for 𝜂 = 0.6 and 𝑁 = 10,
only 10.7% of nodes have timer values greater than 𝑇max.
This result is relevant in a high mobility environment where
selection needs to be fast as the metric values become outdated
quickly. As 𝜂 increases, the scheme becomes conservative in
order to improve its probability of success. For example, when
𝜂 = 0.87 and 𝑁 = 10, 37.5% of nodes, on average, do
not transmit at all. As 𝜂 approaches the maximum success
probability of Scheme 1, Scheme 2’s parameters converge to
those of Scheme 1.

A. Comparison with the Splitting-Based Selection Algorithm
with Feedback

It is instructive to compare the optimal timer scheme with
the time-slotted splitting algorithm of [16], [22] given that they
both achieve the same goal but in a vastly different manner.
The splitting algorithm is fast; it selects the best node within
2.467 time-slots, on average, even when 𝑘 is large. In it, the
sink broadcasts a feedback message to the nodes at the end of
every slot to specify whether the outcome of the transmission
in the slot was an idle, a success, or a collision.

We consider, as an example, selection in IEEE 802.11
wireless local area networks [23] that use half-duplex nodes
with carrier sensing capability. For the splitting algorithm, the
duration of a slot, in 802.11 terminology, is 2(aSIFSTime +
aPreambleLength+ aPLCPHeaderLength), where the last two
terms account for a packet’s preamble and header.4 This is
because each slot contains two transmissions, the first by
one or more nodes and the second by the sink to send
the 2-bit feedback (plus preambles and headers), and every
transmission is followed by a small interframe space (SIFS).
On the other hand, the timer algorithm requires no feedback

4Note that even this is optimistic because it does not account for the
multiple access (MAC) packet data unit payload.

transmission. Therefore, Δ = aSlotTime, and the optimal
timer scheme’s average selection time is Γ∗

𝑁 .5 From [23,
Table 17-15], for an Orthogonal Frequency Division Mul-
tiplexing (OFDM) system with a bandwidth of 10 MHz,
aSlotTime = 13 𝜇s, aSIFSTime = aPreambleLength = 32 𝜇s,
and aPLCPHeaderLength = 8 𝜇s. Hence, the splitting al-
gorithm’s slot duration is 144 𝜇s, which is 11 times the
vulnerability window, Δ = 13 𝜇s, of the timer scheme.

Table I shows the average selection time as a function of
the probability of success constraint for the timer scheme, and
compares it with splitting scheme for large 𝑘. Note that the
splitting scheme’s probability of success is entirely determined
by 𝑇max and is not tunable. When 𝑇max is small, the timer
scheme is faster and can also achieve a higher probability
of success if required. For larger 𝑇max, the probability of
success of the splitting algorithm increases considerably; but,
the timer scheme is still faster than the splitting scheme unless
the probability of success required is high.

VI. CONCLUSIONS

We considered timer-based selection schemes that work by
ensuring that the best node’s timer expires first. Each node
maps its priority metric to a timer value, and begins its
transmission after the timer expires. We developed optimal
schemes that (i) maximized the probability of successful
selection, or (ii) minimized the expected selection time given
a lower constraint on the probability of successful selection.
Both the optimal schemes mapped the metrics into 𝑁 + 1
discrete timer values, where 𝑁 = ⌊𝑇max/Δ⌋. The first scheme
that maximized the probability of success also served as a
feasibility criterion for the second scheme.

We saw that a larger maximum selection duration 𝑇max

improved the performance of both schemes. In the asymptotic
regime, where the number of nodes is large, the occurrence
of a Poisson process led to a considerably simpler recur-
sive characterization of the optimal mapping. The optimal
schemes’ performance was significantly better than the inverse
metric mapping. Unlike the latter mapping, the optimal one’s
performance did not depend on the probability distribution
function of the metric.

The optimal timer scheme even compared favorably with
the splitting-based selection algorithm, especially when the
time available for selection is small. This was because the
slot interval in splitting needs to include two transmissions,
one from the nodes and one for feedback from the sink, and
the respective switching, propagation, and processing delays.

APPENDIX

A. Proof of Lemma 1

The key idea behind the proof is to successively refine
𝑓(.), by making parts of it discrete, and show that this can
only improve the probability of success. Consider an arbitrary
monotone non-increasing metric-to-timer mapping 𝑓(𝜇). If
𝑇max < Δ (i.e., 𝑁 = 0), consider the modified mapping
𝑓0(𝜇) such that 𝑓0(𝜇) = 0, 0 ≤ 𝑓(𝜇) ≤ 𝑇max. It sets all

5In case the system requires the sink to send a feedback message at the
end of selection phase, the average selection time changes to Γ∗

𝑁 + 2 ×
aSIFSTime + aPreambleLength + aPLCPHeaderLength.
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timer values that were less than or equal to 𝑇max in 𝑓(𝜇) to
0. This does not change the probability of success because
the probability that exactly one timer expires in the interval
[0, 𝑇max] remains the same.

When 𝑇max ≥ Δ, consider the modified mapping 𝑓1(𝜇)
derived from 𝑓(𝜇) as follows:

𝑓1(𝜇) =

{
0, 0 ≤ 𝑓(𝜇) < Δ
𝑓(𝜇), else

. (11)

It is easy to verify that 𝑓1(.) is also monotone non-increasing.
We now show that the probability of success of the mapping
𝑓1(.) is always greater than or equal to that of 𝑓(𝜇).

The probability of success in selecting the best node, which
we denote by 𝑃𝑁 , can be written as:6

𝑃𝑁 = Pr
(
𝑇(1) ≤ 𝑇max < 𝑇(2)

)
+ Pr

(
𝑇(1) ≤ 𝑇(2) ≤ 𝑇max, 𝑇(2) − 𝑇(1) ≥ Δ

)
. (12)

The second term can be further split into three mutually
exclusive events:

1) 0 ≤ 𝑇(1) < Δ ≤ 𝑇(2) ≤ 𝑇max,
2) 0 < Δ ≤ 𝑇(1) ≤ 𝑇(2) ≤ 𝑇max, and
3) 0 ≤ 𝑇(1) ≤ 𝑇(2) < Δ ≤ 𝑇max.

The last event does not contribute to 𝑃𝑁 as a collision will
surely occur. Therefore,

𝑃𝑁 = Pr
(
𝑇(1) ≤ 𝑇max, 𝑇(2) > 𝑇max

)
+ Pr

(
0 ≤ 𝑇(1) < Δ ≤ 𝑇(2) ≤ 𝑇max, 𝑇(2) − 𝑇(1) ≥ Δ

)
+ Pr

(
0 < Δ ≤ 𝑇(1) ≤ 𝑇(2) ≤ 𝑇max, 𝑇(2) − 𝑇(1) ≥ Δ

)
.

(13)

The first and third terms in (13) are clearly the same for
both 𝑓(.) and 𝑓1(.). The second term in (13) can only increase
for 𝑓1(.) because the event 𝑇(2)−𝑇(1) ≥ Δ for 𝑓(.) is a subset
of that of 𝑓1(.), and the event 0 ≤ 𝑇(1) < Δ ≤ 𝑇(2) ≤ 𝑇max

is the same for both mappings. Hence, the success probability
of 𝑓1(.) is greater than or equal to that of 𝑓(.). Since this
argument applies to any 𝑓(𝜇), it also applies to the optimal
𝑓∗(.), for which, by definition, the probability of success
cannot be increased. The above argument is sufficient to show
the result for 𝑇max < 2Δ.

Otherwise, we apply an analogous argument successively
as follows. Let

𝑓2(𝜇) =

{
Δ, Δ ≤ 𝑓1(𝜇) < 2Δ
𝑓1(𝜇), else

. (14)

Then, 𝑃𝑁 for both 𝑓1(.) and 𝑓2(.) can be written as

𝑃𝑁 = Pr
(
𝑇(1) ≤ 𝑇max < 𝑇(2)

)
+ Pr

(
0 ≤ 𝑇(1) ≤ 𝑇(2) < 2Δ ≤ 𝑇max, 𝑇(2) − 𝑇(1) ≥ Δ

)
+ Pr

(
0 ≤ 𝑇(1) < 2Δ ≤ 𝑇(2) ≤ 𝑇max, 𝑇(2) − 𝑇(1) ≥ Δ

)
+ Pr

(
0 < 2Δ ≤ 𝑇(1) ≤ 𝑇(2) ≤ 𝑇max, 𝑇(2) − 𝑇(1) ≥ Δ

)
.

(15)

The first and fourth probability terms are clearly the same for
both mappings. The second term is also the same for both
mappings because, given that both 𝑇(1) and 𝑇(2) are less than

6The subscript 𝑁 is used to maintain the same notation throughout the
paper, and follows from the discreteness result proved in this lemma.

2Δ, the probability their difference exceeds Δ is the same for
both 𝑓1(𝜇) and 𝑓2(𝜇). The third probability term in (15) can
only increase for 𝑓2(.) because the event 𝑇(2) −𝑇(1) ≥ Δ for
𝑓1(.) is a subset of that of 𝑓2(.), and the probability of the
event 0 ≤ 𝑇(1) ≤ 2Δ < 𝑇(2) ≤ 𝑇max is the same for both
mappings.

A successive application of this argument shows that an
optimal mapping is discrete in the interval of [0, 𝑁Δ) and
takes values in the set {0,Δ, 2Δ, . . . , (𝑁−1)Δ}. We set all 𝑇𝑖

in the leftover interval of [𝑁Δ, 𝑇max] to 𝑁Δ without changing
the probability of success because 𝑇max −𝑁Δ < Δ and the
fact that no timer value of 𝑓𝑁 (.) lies in the open interval
((𝑁 − 1)Δ, 𝑁Δ).

B. Proof of Theorem 1

In this proof, we shall denote the probability of success
by 𝑃𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) instead of just 𝑃𝑁 to show its de-
pendence on 𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]. Let the maximum probability
of success, 𝑃 ∗

𝑁 , occur when 𝛼𝑁 [0] = 𝛼∗
𝑁 [0], . . . , 𝛼𝑁 [𝑁 ] =

𝛼∗
𝑁 [𝑁 ]. Note that 𝛼𝑁 [0] + ⋅ ⋅ ⋅+ 𝛼𝑁 [𝑁 ] ≤ 1.
Given the discrete nature of the optimal timer scheme

(Lemma 1), success occurs at time 𝑙Δ, for 𝑙 = 0, . . . , 𝑁 ,
if 𝜇(1) lies in

[(
1−∑𝑙

𝑗=0 𝛼𝑁 [𝑗]
)
,
(
1−∑𝑙−1

𝑗=0 𝛼𝑁 [𝑗]
))

and

the remaining 𝑘 − 1 metrics lie in
[
0,
(
1−∑𝑙

𝑗=0 𝛼𝑁 [𝑗]
))

.

This occurs with probability 𝑘𝛼𝑁 [𝑙]
(
1−∑𝑙

𝑗=0 𝛼𝑁 [𝑗]
)𝑘−1

,

since the metrics are i.i.d. and uniformly distributed over [0, 1).
Summing over 𝑙 results in (3).

Alternately, for 𝑁 ≥ 1, the probability of success can be
written in a recursive form as follows:

𝑃𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) = Pr
(
𝜇(1) ∈ [1− 𝛼𝑁 [0], 1)

)
× Pr

(
success∣𝜇(1) ∈ [1− 𝛼𝑁 [0], 1)

)
+ Pr

(
𝜇(1) ∕∈ [1− 𝛼𝑁 [0], 1)

)
× Pr

(
success∣𝜇(1) ∕∈ [1− 𝛼𝑁 [0], 1)

)
. (16)

Furthermore, when conditioned on 𝜇(1) ∕∈ [1 − 𝛼𝑁 [0], 1),
the 𝑘 metrics are i.i.d. and uniformly distributed over the
interval [0, 1 − 𝛼𝑁 [0]), and 𝛼𝑁 [1]

1−𝛼𝑁 [0] + ⋅ ⋅ ⋅ + 𝛼𝑁 [𝑁 ]
1−𝛼𝑁 [0] ≤

1. Therefore, from the definition of probability of suc-
cess, it follows that Pr

(
success∣𝜇(1) ∕∈ [1− 𝛼𝑁 [𝑘], 1)

)
=

𝑃𝑁−1

(
𝛼𝑁 [1]

1−𝛼𝑁 [0] , . . . ,
𝛼𝑁 [𝑁 ]
1−𝛼𝑁 [0]

)
. Hence,

𝑃𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) = 𝑘𝛼𝑁 [0](1− 𝛼𝑁 [0])𝑘−1

+(1− 𝛼𝑁 [0])𝑘𝑃𝑁−1

(
𝛼𝑁 [1]

1− 𝛼𝑁 [0]
, . . . ,

𝛼𝑁 [𝑁 ]

1− 𝛼𝑁 [0]

)
, (17)

≤ 𝑘𝛼𝑁 [0](1− 𝛼𝑁 [0])𝑘−1 + (1 − 𝛼𝑁 [0])𝑘𝑃 ∗
𝑁−1. (18)

However, given any 𝛼𝑁 [0] ∈ [0, 1), this upper bound
is achieved when 𝛼𝑁 [1]

1−𝛼∗
𝑁 [0] = 𝛼∗

𝑁−1[0], . . . ,
𝛼𝑁 [𝑁 ]

1−𝛼∗
𝑁 [0] =

𝛼∗
𝑁−1[𝑁 −1]. Therefore, the maximum probability of success

given 𝑁 equals

𝑃 ∗
𝑁 = max

0≤𝛼𝑁 [0]<1

(
𝑘𝛼𝑁 [0](1− 𝛼𝑁 [0])𝑘−1

+ (1− 𝛼𝑁 [0])𝑘𝑃 ∗
𝑁−1

)
, (19)

= 𝑘𝛼∗
𝑁 [0](1− 𝛼∗

𝑁 [0])𝑘−1 + (1− 𝛼∗
𝑁 [0])𝑘𝑃 ∗

𝑁−1, (20)
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where 𝛼∗
𝑁 [0] is the argument that maximizes (19). Using the

first order condition, we get 𝛼∗
𝑁 [0] =

1−𝑃∗
𝑁−1

𝑘−𝑃∗
𝑁−1

. For 𝑁 = 0,

𝑃 ∗
0 = max0≤𝛼0[0]≤1

(
𝑘𝛼0[0](1− 𝛼0[0])

𝑘−1
)
. The maximum

occurs at 𝛼∗
0[0] = 1/𝑘, in which case 𝑃 ∗

0 = (1− 1/𝑘)𝑘−1.
Note that the value of 𝑓∗(𝜇) when it exceeds 𝑇max can be

left unspecified because a node does not start transmitting after
𝑇max. This is ensured by setting 𝑓∗(𝜇) to 𝑇max + 𝜖, where
𝜖 > 0.

C. Proof of Theorem 2

Success occurs at time 𝑙Δ when exactly one node
(the best node) has its scaled metric in the interval(∑𝑙−1

𝑗=0 𝛽𝑁 [𝑗],
∑𝑙

𝑗=0 𝛽𝑁 [𝑗]
]

and no other node has its scaled

metric in
(
0,
∑𝑙−1

𝑗=0 𝛽𝑁 [𝑗]
)
. From the independent increments

property of Poisson processes, selection success thus occurs
with probability 𝛽𝑁 [𝑙]𝑒−𝛽𝑁 [𝑙]

∏𝑙−1
𝑗=0 𝑒

−𝛽𝑁 [𝑗], which simplifies

to 𝛽𝑁 [𝑙]𝑒−
∑𝑙

𝑗=0 𝛽𝑁 [𝑗]. Summing over all 𝑙, we get

𝑃𝑁 (𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ]) =
𝑁∑
𝑙=0

𝛽𝑁 [𝑙]𝑒−
∑𝑙

𝑗=0 𝛽𝑁 [𝑗]. (21)

Note that we explicitly show here the dependence of 𝑃𝑁 on the
variables 𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ] that are being optimized. Taking
the partial derivative of 𝑃𝑁 (𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ]) with respect
to 𝛽𝑁 [𝑚] and equating to 0, we get

𝑁∑
𝑙=𝑚

𝛽∗
𝑁 [𝑙]𝑒−

∑𝑙
𝑗=𝑚+1 𝛽∗

𝑁 [𝑗] = 1, for 𝑚 = 0, . . . , 𝑁, (22)

where 𝛽∗
𝑁 [𝑚] are the optimal values of 𝛽𝑁 [𝑚]. When 𝑚 = 𝑁 ,

we get 𝛽∗
𝑁 [𝑁 ] = 1. For 0 ≤ 𝑚 ≤ 𝑁 − 1, upon substi-

tuting the equation for 𝑚 + 1 into the one for 𝑚, we get
𝛽∗
𝑁 [𝑚] = 1− 𝑒−𝛽∗

𝑁 [𝑚+1].
The optimal probability of success in (21) can be written

as

𝑃 ∗
𝑁 = 𝑒−𝛽∗

𝑁 [0]
𝑁∑
𝑙=0

𝛽∗
𝑁 [𝑙]𝑒−

∑𝑙
𝑗=1 𝛽∗

𝑁 [𝑗] = 𝑒−𝛽∗
𝑁 [0]. (23)

The last equality follows from (22), which shows for 𝑚 = 0

that
∑𝑁

𝑙=0 𝛽
∗
𝑁 [𝑙]𝑒−

∑𝑙
𝑗=1 𝛽∗

𝑁 [𝑗] = 1.

D. Proof of Lemma 3

This proof also uses the successive refinement approach of
Appendix A. To avoid repetition, we only highlight the main
points where it differs from Appendix A.

Let 𝑓∗(𝜇) be the optimal feasible mapping. From it, we
construct a new monotone non-increasing mapping 𝑓1(𝜇) such
that 𝑓1(𝜇) = 0, if 0 ≤ 𝑓∗(𝜇) < Δ, and 𝑓1(𝜇) = 𝑓∗(𝜇),
otherwise. It follows from Appendix A that 𝑓1(𝜇) is also a
feasible mapping since its probability of success is greater than
or equal to that of 𝑓∗(.). Furthermore, 𝑓1(.) reduces the timer
values of 𝑓∗(.) that lie in the interval [0,Δ) to 0. The timer
values in [Δ, 𝑇max] are unchanged. Therefore, the expected
selection time of 𝑓1(.) is less than or equal to that of 𝑓∗(.).
However, by definition of 𝑓∗(.), its expected selection time
cannot be reduced. Applying the same argument successively,
as in Appendix A, we can show that the optimal 𝑓∗(𝜇) takes
only 𝑁 + 1 discrete values 0,Δ, . . . , 𝑁Δ.

E. Proof of Theorem 3

We will denote the auxiliary function as
𝐿𝜆
𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) to clearly show its dependence

on 𝑁 and 𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]. Similarly, the probability
of success and expected selection time are denoted
by 𝑃𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) and Γ𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]),
respectively.

We first find the expression for the expected selection
time. Since 𝑇(1)/Δ is an integer-valued non-negative RV
that takes values in the set {0, 1, . . . , 𝑁}, we have 𝑇(1) =

Δ
∑𝑁−1

𝑙=0 𝐼{𝑇(1)/Δ>𝑙}, where 𝐼{𝑥} is an indicator function that
equals 1 if condition 𝑥 is true, and is 0 otherwise. Taking
expectations on both sides, we get

Γ𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) = Δ

𝑁−1∑
𝑙=0

Pr
(
𝑇(1)/Δ > 𝑙

)
,

= Δ

𝑁−1∑
𝑙=0

⎛
⎝1−

𝑙∑
𝑗=0

𝛼𝑁 [𝑗]

⎞
⎠

𝑘

. (24)

Alternately, Γ𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) can also be written
recursively as follows. The probability of the event that no
node transmits at time 0 is (1− 𝛼𝑁 [0])

𝑘. Conditioned on this
event, the 𝑘 metrics are i.i.d. and uniformly distributed over
the interval [0, 1 − 𝛼𝑁 [0]). The nodes can now use only the
(𝑁 − 1) timer values in the set {Δ, 2Δ, . . . , 𝑁Δ}. Thus, we
get

Γ𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) = 0
(
1− (1− 𝛼𝑁 [0])

𝑘
)

+(1− 𝛼𝑁 [0])
𝑘

(
Δ+ Γ𝑁−1

(
𝛼𝑁 [1]

1− 𝛼𝑁 [0]
, . . . ,

𝛼𝑁 [𝑁 ]

1− 𝛼𝑁 [0]

))
.

(25)

From the recursive forms in (25) and (17), we get

𝐿𝜆
𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ])

= Δ(1− 𝛼𝑁 [0])𝑘 − 𝜆𝑘𝛼𝑁 [0](1− 𝛼𝑁 [0])𝑘−1

+ (1− 𝛼𝑁 [0])𝑘 𝐿𝜆
𝑁−1

(
𝛼𝑁 [1]

1− 𝛼𝑁 [0]
, . . . ,

𝛼𝑁 [𝑁 ]

1− 𝛼𝑁 [0]

)
.

Since 𝛼𝑁 [1]
1−𝛼𝑁 [0] + ⋅ ⋅ ⋅ + 𝛼𝑁 [𝑁 ]

1−𝛼𝑁 [0] ≤ 1, it follows from the
definition of 𝐿∗𝜆

𝑁 that

𝐿𝜆
𝑁 (𝛼𝑁 [0], . . . , 𝛼𝑁 [𝑁 ]) ≥ Δ(1 − 𝛼𝑁 [0])𝑘

− 𝜆𝑘𝛼𝑁 [0](1− 𝛼𝑁 [0])𝑘−1 + (1− 𝛼𝑁 [0])𝑘 𝐿∗𝜆
𝑁−1, (26)

with equality when 𝛼𝑁 [1]
1−𝛼𝑁 [0] = 𝛼∗

𝑁−1[0], . . . ,
𝛼𝑁 [𝑁 ]

1−𝛼𝑁 [0] =

𝛼∗
𝑁−1[𝑁 − 1], for any 𝛼𝑁 [0]. Therefore,

𝐿∗𝜆
𝑁 = min

0≤𝛼𝑁 [0]<1

(
Δ(1− 𝛼𝑁 [0])𝑘 − 𝜆𝑘𝛼𝑁 [0] (1− 𝛼𝑁 [0])𝑘−1

+ (1− 𝛼𝑁 [0])
𝑘
𝐿∗𝜆
𝑁−1

)
,

= Δ(1− 𝛼∗
𝑁 [0])

𝑘 − 𝜆𝑘𝛼∗
𝑁 [0] (1− 𝛼∗

𝑁 [0])
𝑘−1

+ (1− 𝛼∗
𝑁 [0])

𝑘
𝐿∗𝜆
𝑁−1.

From the first order condition, we get 𝛼∗
𝑁 [0] =

1+ 𝜆
Δ− 𝜆

Δ𝐿∗𝜆
𝑁−1

1+ 𝜆
Δ𝑘− 𝜆

Δ𝐿∗𝜆
𝑁−1

.

Furthermore, Γ𝑁 = 0 for 𝑁 = 0. Therefore, 𝐿∗𝜆
0 =

min𝛼0[0] 𝜆
(
𝑘𝛼0[0] (1− 𝛼0[0])

𝑘−1
)
. The optimal value 𝛼∗

0[0]

that minimizes this expression, for any 𝜆 > 0, is 𝛼∗
0[0] = 1/𝑘.
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F. Proof of Theorem 4

The expression for the 𝑃𝑁 (𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ]) as a function
of 𝛽𝑁 [𝑗], for 𝑗 = 0, . . . , 𝑁 , follows directly from (21). The
expression for Γ𝑁 (𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ]) can be written as

Γ𝑁 (𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ]) = Δ
𝑁−1∑
𝑙=0

Pr
(
𝑇(1)/Δ > 𝑙

)
,

= Δ

𝑁−1∑
𝑙=0

𝑒−
∑𝑙

𝑗=0 𝛽𝑁 [𝑗],

where the first equality follows from (24) and the last equality
follows from the Poisson process result of Lemma 2. The
auxiliary function then equals

𝐿𝜆
𝑁(𝛽𝑁 [0], . . . , 𝛽𝑁 [𝑁 ]) = Δ

𝑁−1∑
𝑙=0

𝑒−
∑𝑙

𝑗=0 𝛽𝑁 [𝑗]

− 𝜆

(
𝑁∑
𝑙=0

𝛽𝑁 [𝑙]𝑒−
∑𝑙

𝑗=0 𝛽𝑁 [𝑗]

)
.

From the first order condition, it follows that 𝐿𝜆
𝑁 is minimized

when 𝛽∗
𝑁 [𝑗] = 1− 𝑒−𝛽∗

𝑁 [𝑗+1] + Δ
𝜆 .
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