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Performance of a Fast, Distributed Multiple Access
Based Relay Selection Algorithm Under

Imperfect Statistical Knowledge
Virag Shah, Neelesh B. Mehta, Senior Member, IEEE, and Dilip Bethanabhotla

Abstract—Cooperative wireless systems can exploit spatial
diversity by opportunistically selecting the best relay to forward
data to a destination. However, determining the best relay is a
challenging task and requires a selection algorithm because the
relays are geographically separated and only have local channel
knowledge. Selecting the best relay is equivalent to finding the
relay with the largest metric, where each relay computes its
metric using local channel knowledge. We analyze the perfor-
mance of a fast, distributed, and scalable multiple access based
selection algorithm when it assumes incorrect values for two
fundamental parameters that it requires to operate efficiently –
the number of available relays and the cumulative distribution
function (CDF) of the metrics. Such imperfect knowledge will
invariably arise in practice. We develop new expressions for the
time required to select the best relay as a function of the assumed
and actual parameters. We show that imperfect knowledge can
significantly slow down the selection algorithm. Further, in a
system that uses its observations to update its CDF estimate,
we determine the minimum number of observations required to
limit the performance degradation. We also develop a minimax
formulation that makes the algorithm robust to uncertainties in
the number of relays in the system.

Index Terms—Multiple access techniques, relays, cooperative
communications, splitting algorithms, diversity, selection, cross-
layer optimization, distributed, estimation.

I. INTRODUCTION

RELAY-AIDED cooperative communications exploits spa-
tial diversity by using geographically separated relays

to forward information from a source to a destination. It is
considered to be a promising technology for future wireless
systems, and is likely to be employed in practical standards
such as Long Term Evolution Advanced (LTE-A) [1], [2], and
IEEE 802.16j and 802.16m WiMAX [3], [4]. When multiple
relays are available, selection of a single best relay based on
the channel conditions has emerged as a practically appealing
solution for harnessing spatial diversity without having to

Manuscript received January 26, 2011; revised May 12, 2011; accepted
July 22, 2011. The associate editor coordinating the review of this paper and
approving it for publication was C.-C. Chong.

V. Shah is with the Dept. of Electrical Eng., Univ. of Texas at Austin
(e-mail: virag4u@gmail.com).

N. B. Mehta is with the Dept. of Electrical Communication Eng., Indian In-
stitute of Science (IISc), Bangalore, India (e-mail: nbmehta@ece.iisc.ernet.in).

D. Bethanabhotla is with the Dept. of Electrical Eng., Univ. of Southern
California (e-mail: dilip.bethanabhotla@gmail.com).

V. Shah and D. Bethanabhotla were at IISc during the course of this work.
A part of this work has appeared in the National Conf. on Communications

(NCC), Guwahati, India, Jan. 2009.
This work is partially supported by a research grant from the Advanced

Networking Research Consortium (ANRC).
Digital Object Identifier 10.1109/TWC.2011.081011.110183

maintain tight synchronization across the relays [5]–[9]. It
is being investigated for applications such as wireless sensor
networks for industrial automation and for reliable short-range
communications [10].

Implementing selection in a multi-relay system requires
tackling a new set of challenges because the relays are
geographically separated from each other. This is because a
relay cannot know whether it is the best relay on the basis of
its local channel knowledge. Therefore, a selection algorithm
becomes essential to select the best relay. Altogether, two
aspects drive the selection process, namely, the criterion that
determines which relay is the best and the selection algorithm.
We first discuss two common examples below to illustrate
criteria based on which a relay is selected.

Example 1: Consider a two-hop cooperative network that
uses amplify-and-forward (AF) relays. The signal-to-noise
(SNR) ratio at the destination is proportional to the summation
of the source-to-destination channel power gain and half the
harmonic mean of the source-to-relay (SR) and relay-to-
destination (RD) channel power gains [5]. Therefore, the relay
with the highest harmonic mean of the SR and RD channel
power gains must be selected.

Example 2: Now consider a network that instead uses
decode-and-forward (DF) relays. Then, among the relays that
have decoded the source’s message, the one with the largest
RD channel power gain must be selected in order to maximize
the transmission rate to the destination or minimize energy
consumption by the transmitting relay for a given target data
rate [11], [12].

In general, each relay computes a real-valued metric, which
is a function of its local channel gains and the specific cooper-
ative protocol used for data transmission, and the goal of the
selection algorithm is to find the relay with the highest metric.
In the AF example above, the metric equals the harmonic
mean of the SR and RD channel power gains. Similarly, in
the DF example above, the metric equals the RD channel
power gain if the relay has decoded the source’s message and
is zero, otherwise [11]. Note that in addition to the above
two examples, other metrics for cooperative communication
protocols have been considered in the literature. See, for
example, [12], [13] and references therein. After selection,
cooperative data transmission takes place using the selected
relay. Such selection needs to be carried out once in every
coherence interval, within which the channel gains do not
change appreciably.

One simple example of a selection algorithm is polling. In
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it, each relay sequentially transmits its metric to a centralized
scheduler, which then selects the best relay. While polling is
simple, it is not scalable as the time required by it to select
the best relay increases linearly with the number of available
relays. However, distributed selection algorithms such as the
splitting based selection algorithm [14]–[16] and the timer
based backoff algorithm [6], [17]–[19] effectively circumvent
this problem.

In this paper, we focus on the splitting based selection
algorithm, which is based on multiple access principles and
is time-slotted. The splitting algorithm is attractive because
it is provably fast and scalable. It was proposed for wireless
systems in [14] and was subsequently refined and generalized
in [15]. In it, only relays whose metrics lie between two
thresholds transmit in a slot. At the end of each slot, the sink
broadcasts a three-state feedback to all the relays informing
them whether zero (idle), one (success), or multiple relays
(collision) transmitted. The thresholds are updated based on
this feedback. When only one relay transmits in a slot, the
design of the algorithm guarantees that it is the best relay.
The algorithm then terminates.

The splitting based selection algorithm requires fewer than
2.507 slots, on average, to select the best relay even when the
number of available relays tends to infinity [14]. Consequently,
a greater portion of the coherence interval can be devoted
to relay-aided data transmission, which increases the overall
system throughput [11]. Note that the splitting algorithm for
selection fundamentally differs from its conventional multiple
access control counterparts, e.g., the first come first serve
(FCFS) algorithm [20], because the goal of the latter is to
enable all the relays to access the channel one by one.

The splitting algorithm turns out to be fast and scalable be-
cause it updates the thresholds to ensure that about one relay,
on average, transmits in a slot [14]–[16]. In order to ensure
this, the algorithm requires the knowledge of: (i) the number
of relays in the system and (ii) the cumulative distribution
function (CDF) of the metrics of the relays. We shall refer to
these as the parameters of the algorithm. However, in practice,
the relay count that the algorithm assumes may be inaccurate
because relays may enter or leave the system. Alternately, the
relays may go to sleep and become unavailable temporarily.

Similarly, knowing the CDF perfectly is difficult because
the wireless channel statistics are different for different en-
vironments, and may even change after a sufficiently large
time has elapsed [21]. In such a case, the network has two
options available to it: (i) Use a ‘factory preset’ CDF and
relay count setting in all the relays. This simplistic approach is
preferable in low complexity networks. However, the selection
algorithm’s performance degrades when the actual parame-
ters encountered in the field are different; it also offers no
guarantees about performance. (ii) Estimate the CDF during
operation. The more the observations, the more accurate the
estimate. However, the time-frequency resources required to
collect the observations and to communicate with the relays
in the network correspondingly increase.

A. Focus and Contributions

The key question that this paper addresses is the impact
of imperfect parameter knowledge on the time required by

the splitting based selection algorithm to select the best relay.
This is a crucial step in determining the performance of the
algorithm in a practical scenario where the statistics are either
assumed (i.e., factory preset) or are updated infrequently. We
derive exact expressions for the probability distribution of the
time required by the algorithm to select the best relay as
a function of the assumed and actual values of the metric
CDF and relay count. This also leads to an expression for the
average time required by the algorithm to select.

We then consider approaches to reduce the performance
degradation in a network that can update its statistics on
the basis of the metrics observed by its relays. With the
help of the analysis, we determine the minimum number of
observations that should be used to estimate the CDF in order
to ensure that the degradation in performance is within an
acceptable limit. Both parametric and non-parametric CDF
estimation techniques, which trade-off accuracy for generality,
are investigated. For example, we find that with a parametric
CDF estimator and Rayleigh fading, just 50 observations
ensure that the average selection time is within 3% of the
time required using perfect statistical knowledge. With a non-
parametric estimator and the same number of observations,
the increase in the average selection time is 5%, which is still
small. A minimax formulation is also developed to make the
algorithm’s performance robust to uncertainties in the relay
count.

B. Related Work

The performance of selection algorithms under imperfect
knowledge has received relatively limited attention in the
literature. For example, selection was assumed to be perfect
and instantaneous in [5], [7], [22], [23]. The parameters of
the splitting algorithm were assumed to be known perfectly in
the analyses developed in [14], [15]. While [14] considered
a scenario where the metrics change during the selection
process, the CDF and the number of users are assumed to
be perfectly known. A stochastic approximation algorithm was
used in [24] to adjust the parameters of the splitting algorithm.
However, it requires several thousand slots to converge and
also incurs a marginal performance loss as it uses a simplified
parametric model for the algorithm. Instead, our results show
that estimating the CDF using the techniques considered in
this paper require far fewer observations.

Remark 1: We do not delve into another reason behind
imperfect selection, which is the inaccuracy in the metrics
themselves. It occurs because the channel gains, on which the
metrics depend, are estimated in the presence of noise and
interference and may vary with time [25]. Since the relays’
metrics now depend on the estimated channel gains, this can
cause a sub-optimal relay – but still the one with the highest
metric – to get selected. Its main impact is system-specific,
i.e., it affects the performance of cooperative data transmission
using the selected relay [26], [27]. It affects the selection
algorithm’s performance only to the extent that it changes the
statistics of the metric, which our general analysis handles.

The rest of the paper is organized as follows. Section II
describes the system model and the selection algorithm. Im-
pact of imperfect knowledge is analyzed in Sec. III. CDF
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estimation techniques and the accuracy required of them for
the purposes of the selection algorithm are investigated in
Sec. IV. A robust approach to handle imperfect relay counts
is developed in Sec. V. Our conclusions follow in Sec. VI.
Several mathematical proofs are relegated to the Appendix.

II. SPLITTING BASED SELECTION ALGORITHM AND

SYSTEM MODEL

Figure 1 shows a system with 𝑛 relays and a sink. The sink
refers to the source or destination or any other entity in the
system that coordinates the selection process and determines
the best relay. Each relay 𝑖 generates a metric 𝜇𝑖 ∈ ℝ as a
function of its local knowledge; 𝜇𝑖 is known only to relay
𝑖. The goal of the selection algorithm is to select the relay
with the highest metric: argmax𝑖=1,...,𝑛 𝜇𝑖. The metrics of
different relays are assumed to be independent and identically
distributed (i.i.d.) random variables (RVs), as has also been
assumed, for example, in [6], [9], [14], [15], [19], [24]. The
actual CDF of the metric is denoted by 𝐹. Let 𝐹asm denote the
metric CDF assumed (asm.) by the relays, and let 𝑛asm denote
the relay count assumed.

The goal of the selection algorithm is to choose the relay
with the highest (best) metric. The algorithm is time-slotted
and defines two transmission thresholds 𝐻𝐿[𝑘] and 𝐻𝐻 [𝑘] in
each slot 𝑘. A relay transmits in a slot only if its metric lies
in between these two thresholds. Also defined is a variable
𝐻min[𝑘], which is the smallest value that the highest metric
can possibly take in the 𝑘th slot. The thresholds are gradually
lowered based on whether zero or multiple relays transmitted
in a slot, until exactly one relay transmits.

A quasi-static channel model is assumed. The various
channels are assumed to remain constant during the selection
process and the subsequent cooperative data transmission
phase using the selected relays. Therefore, the metrics are kept
fixed during the course of the algorithm.

A. With Perfect Statistical Knowledge

To build intuition, we first consider the case with perfect
statistical knowledge. For brevity, we shall refer to this as
the perfect knowledge case. We define and then explain the
selection algorithm when the metrics are uniformly distributed
over [0, 1]. The case where the metrics follow a general
continuous CDF, 𝐹, is discussed thereafter.1

1) Metrics Uniformly Distributed in (0, 1): The selection
algorithm is defined as follows:

Transmission rule: At the beginning of a slot 𝑘, a relay
transmits if and only if its metric lies in between 𝐻𝐿[𝑘] and
𝐻𝐻 [𝑘].

Feedback generation: At the end of each slot, the sink
broadcasts to all relays a three-state (two bit) feedback:
(i) idle, if no relay transmitted in the slot, (ii) success, if one
relay transmitted and was, therefore, decoded by the sink, or
(iii) collision, if at least two relays transmitted and, therefore,
no transmission could be decoded by the sink.

1This model covers several common channel fading models such as
Rayleigh, Rician, or Nakagami-𝑚. The case of discontinuous CDFs, which
occurs when the metrics take discrete values, can be handled in the same
manner using a technique called Proportional Expansion [15]. In it, the users
autonomously generate new metrics whose CDF is continuous.

Response to feedback at the end of the 𝑘th slot:
∙ If feedback is an idle and no collisions have occurred

thus far, then

𝐻𝐻 [𝑘 + 1] = 𝐻𝐿[𝑘], 𝐻min[𝑘 + 1] = 0, and

𝐻𝐿[𝑘 + 1] =

(
𝐻𝐿[𝑘]− 𝜁

𝑛

)+

=

(
1− (𝑘 + 1)𝜁

𝑛

)+

,

(1)

where (𝑥)+ ≜ max(𝑥, 0).
∙ If feedback is a collision, then

𝐻𝐻 [𝑘 + 1] = 𝐻𝐻 [𝑘], 𝐻min[𝑘 + 1] = 𝐻𝐿[𝑘], and

𝐻𝐿[𝑘 + 1] =
𝐻𝐿[𝑘] +𝐻𝐻 [𝑘]

2
. (2)

∙ If feedback is an idle and a collision has occurred in the
past, then

𝐻𝐻 [𝑘 + 1] = 𝐻𝐿[𝑘], 𝐻min[𝑘 + 1] = 𝐻min[𝑘], and

𝐻𝐿[𝑘 + 1] =
𝐻min[𝑘] +𝐻𝐿[𝑘]

2
. (3)

∙ If feedback is a success, then terminate.
Initialization (𝑘 = 1): Set 𝐻𝐿[1] = 1 − 𝜁/𝑛, 𝐻𝐻 [1] = 1,

and 𝐻min[1] = 0.
2) Brief explanation: The algorithm ensures that 𝜁 users

on average transmit in every slot until a collision occurs. We,
therefore, call 𝜁 as the contention load parameter. Intuitively,
𝜁 should be close to 1; a smaller 𝜁 results in too many slots
being idle and a large 𝜁 results in too many collisions [15].
In [14], 𝜁 = 1, which greedily maximizes the probability of
success in the next slot, was used. However, it was shown
in [15] that the optimal value of 𝜁 that minimizes the average
time required to select the best relay is 1.088.

At the beginning (𝑘 = 1), 𝐻min[1] = 0 since the highest
metric can lie anywhere in between 0 and 1. The transmission
thresholds cover an interval of length 𝜁 near the largest
possible value of the highest metric. In the case of an idle
outcome, the thresholds are lowered. This is because idle
outcomes until the 𝑘th slot imply that the metrics of all the
relays are less than 𝐻𝐿[𝑘]. The (⋅)+ operation in (1) ensures
that the lower threshold does not become negative.

In case a collision occurs in the 𝑘th slot, it implies that the
highest metric lies in the interval (𝐻𝐿[𝑘], 𝐻𝐻 [𝑘]). Further,
there is at least one other metric that lies in the same interval.
Therefore, 𝐻min[𝑘] is updated, the interval is split into two
equal halves, and relays in the upper half transmit in the next
slot [20, Chap. 4]. If a success occurs, then the one relay that
transmitted in that slot is the best relay that is required to
be selected. The feedback is assumed to be error-free. This
is justifiable given its low payload, and is often assumed in
several selection algorithms [14], [19], [20], [28].

We shall call the durations of the algorithm before and
after the first non-idle slot as the idle and collision phases,
respectively.

3) Generalization to Metrics with CDF 𝐹: The above
algorithm can be easily generalized to handle the general case
where the metric 𝜇𝑖 is not a uniform RV and has a continuous
CDF 𝐹. Consider the RV

𝑣𝑖 = 𝐹(𝜇𝑖). (4)
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Fig. 1. A system consisting of a sink and 𝑛 relays, in which the metric of relay 𝑖 is 𝜇𝑖. The figure illustrates how the 𝑛 relays contend in the splitting based
selection algorithm, how the three scenarios of idle, success, and collision arise over a duration of three slots, and how the relay with the highest metric gets
selected.

It is uniformly distributed between 0 and 1 [29]. Further, since
the CDF is a monotonically increasing function, the relay, say
𝑗, with the highest metric (𝜇𝑗) among all the relays also has
the highest 𝑣𝑗 . Thus, the users now participate in the splitting
algorithm defined in Sec. II-A1 on the basis of 𝑣𝑖. Alternately,
the updating of the thresholds as a function of feedback in the
𝑘th slot as per (1), (2), and (3), and their initialization can
be recast in terms of the metrics, the CDF, 𝐹, and its inverse,
𝐹 inv, as follows. The inverse exists because 𝐹 is monotonically
increasing and continuous.

∙ Idle and no collisions have occurred thus far:
𝐻𝐻 [𝑘 + 1] = 𝐻𝐿[𝑘], 𝐻min[𝑘+1] = 0, and 𝐻𝐿[𝑘+1] =

𝐹 inv

((
𝐹 (𝐻𝐿[𝑘])− 𝜁

𝑛

)+)
= 𝐹 inv

((
1− (𝑘+1)𝜁

𝑛

)+)
.

∙ Collision: 𝐻𝐻 [𝑘 + 1] = 𝐻𝐻 [𝑘], 𝐻min[𝑘 + 1] = 𝐻𝐿[𝑘],

and 𝐻𝐿[𝑘 + 1] = 𝐹 inv
(

𝐹(𝐻𝐿[𝑘])+𝐹(𝐻𝐻 [𝑘])
2

)
.

∙ Idle and a collision has occurred in the past:
𝐻𝐻 [𝑘 + 1] = 𝐻𝐿[𝑘], 𝐻min[𝑘 + 1] = 𝐻min[𝑘], and

𝐻𝐿[𝑘 + 1] = 𝐹 inv
(

𝐹(𝐻min[𝑘])+𝐹(𝐻𝐿[𝑘])
2

)
.

The variables are initialized as: 𝐻min[1] = 0, 𝐻𝐿[1] =

𝐹 inv
(
1− 𝜁

𝑛

)
, and 𝐻𝐻 [1] = 𝐹 inv(1) = ∞. The transmission,

feedback generation, and termination rules remain unchanged.
The above reformulation again ensures that 𝜁 relays on

average transmit in the idle phase. Further, in the event of a
collision, half the relays that collided will transmit, on average,
in the next slot. Notice that the threshold updates now depend
on the CDF, 𝐹, and the number of relays, 𝑛. The splitting
algorithm’s variables are summarized in Table I.

B. With Imperfect CDF Knowledge and Relay Count

Let the continuous CDF assumed by the relays be 𝐹asm and
let the relay count assumed be 𝑛asm, when the actual CDF
is 𝐹 and the actual relay count is 𝑛. Let 𝐹 inv

asm denote the
inverse of 𝐹asm. In this case, the relays would use 𝐹 inv

asm and
𝑛asm instead of 𝐹 inv and 𝑛 in the splitting algorithm defined in
Sec. II-A3. Therefore, 𝑣𝑖 = 𝐹asm(𝜇𝑖) is no longer uniformly
distributed. Consequently, the algorithm can no longer ensure
that 𝜁 relays transmit, on average, in a slot or that half the
users that collided transmit, on average, in the next slot.

TABLE I
KEY NOTATION USED IN THE PAPER

Symbol Description
Splitting algorithm variables

𝐻𝐿[𝑘] Lower transmission threshold in 𝑘th slot
𝐻𝐻 [𝑘] Upper transmission threshold in 𝑘th slot
𝐻min[𝑘] Minimum possible value of highest metric in 𝑘th

slot.

Metric statistics and relay count variables
𝐹 Actual metric CDF

𝐹asm Assumed metric CDF
𝐹 inv Inverse of actual metric CDF
𝐹 inv

asm Inverse of assumed metric CDF
𝑛 Actual number of relays

𝑛asm Assumed number of relays

Performance analysis variables
𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁) Probability that the best relay is selected within 𝑡

slots when the number of relays is assumed to be
𝑛asm and the metric CDF is assumed to be 𝐹asm

𝑚 (𝑛asm, 𝐹asm, 𝜁) Average number of slots required to select the
best relay when the number of relays is assumed
to be 𝑛asm and the metric CDF is assumed to be
𝐹asm

Remark 2: When the metrics of different relays are not
statistically identical, all relays would still use the same 𝐹asm

in order to preserve the ordering of 𝑣1, . . . , 𝑣𝑛. For example,
𝐹asm can be set as the identity function or it can be set as
the average of the metric CDFs of all the relays. An analysis
of this case is considerably more involved and is beyond the
scope of this paper. The i.i.d. metrics model ensures analytical
tractability. The reader is referred to [30] for a discussion about
the problem of selection with heterogeneous users.

III. ANALYSIS

It can be verified that even with imperfect knowledge, the
splitting based selection algorithm described above is guaran-
teed to select the best relay so long as the support of 𝐹 is a
subset of the support of 𝐹asm. This is a weak requirement on
𝐹asm, and can be easily satisfied. Thus, imperfect knowledge
does not make the selection algorithm fail catastrophically,
which is an attractive attribute of the algorithm. However, it
does increase the average number of slots required by the
algorithm to select the best relay, as we shall see below.
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Notation: The variable 𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁) denotes the prob-
ability that the number of slots required to select the best
relay is less than or equal to 𝑡 ∈ ℤ

+, when the CDF of the
metric is assumed to be 𝐹asm and the number of relays is
assumed to be 𝑛asm. Similarly, 𝑚 (𝑛asm, 𝐹asm, 𝜁) denotes the
average number of slots required to select the best relay. The
ceil function is denoted by ⌈⋅⌉. The indicator function 𝐼{𝜂} is
defined as follows: 𝐼{𝜂} = 1, if the condition 𝜂 is true, and
is 0, otherwise. The probability of an event 𝐴 is denoted by
Pr (𝐴).

The elaborate notation above, which is summarized in
Table I, is designed to bring out the role of imperfect statistics.
We do not include the actual CDF (𝐹) and the actual relay
count (𝑛) in the notation in order to keep it compact, even
though they also affect the performance of the algorithm. The
contention load parameter, 𝜁, is included in the notation as
it leads to compact expressions in the analysis that follows
below. Note that when the statistics are perfectly known, i.e.,
𝐹asm = 𝐹 and 𝑛asm = 𝑛, the above probability and mean
simply become 𝐶 (𝑡;𝑛, 𝐹, 𝜁) and 𝑚 (𝑛, 𝐹, 𝜁), respectively.

A. Reference Case: Perfectly Known CDF (𝐹asm = 𝐹) and
User Count (𝑛asm = 𝑛)

We first derive an expression for 𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁) when
𝐹asm = 𝐹 and 𝑛asm = 𝑛 (perfect knowledge). This is useful
for two reasons. First, it serves as a benchmark. Second, its
proof generalizes to the more difficult case with imperfect
knowledge, which is handled next.

We first prove the following useful lemma about the prob-
ability that the algorithm requires exactly 𝑏 slots to resolve a
collision.

Lemma 1: The probability 𝑝(𝑎, 𝑏) that exactly 𝑏 ≥ 2 more
slots are required to select the best relay given that 𝑎 ≥ 2
relays collided in a slot is

𝑝(𝑎, 𝑏) =
1

2𝑎
𝑝(𝑎, 𝑏− 1) +

1

2𝑎

𝑎∑
𝑖=2

(
𝑎

𝑖

)
𝑝(𝑖, 𝑏− 1), 𝑏 ≥ 2,

(5)

where the recursion is initialized by 𝑝(𝑎, 1) = 𝑎/2𝑎.
Proof: The proof is given in Appendix A.

The expression for the probability that the time required by
the algorithm to select the best relay is less than or equal to
𝑡 slots is then as follows.

Theorem 1: With perfect knowledge of 𝐹 and 𝑛, the
probability that the algorithm selects the best relay within
𝑡 ∈ ℤ

+ slots is

𝐶 (𝑡;𝑛, 𝐹, 𝜁) =

min(𝑡,𝑞)∑
𝑖=1

𝜁

(
1− 𝑖𝜁

𝑛

)𝑛−1

+ 𝐼{𝑡>𝑞+1}

(
1− 𝑞𝜁

𝑛

)𝑛 𝑡−𝑞−1∑
𝑗=1

𝑝(𝑛, 𝑗)

+

min(𝑡,𝑞)−1∑
𝑖=1

𝑛∑
𝑘=2

(
𝑛

𝑘

)(
𝜁

𝑛

)𝑘 (
1− 𝑖𝜁

𝑛

)𝑛−𝑘 𝑡−𝑖∑
𝑗=1

𝑝(𝑘, 𝑗), (6)

where 𝑞 =
⌈
𝑛
𝜁

⌉
− 1.

Proof: The proof is given in Appendix B.

Remark 3: Hitherto, only an expression for the average
number of slots required to select the best relay has been
derived for the perfect knowledge case in [14], [15]. The
above result is more powerful because it derives the probability
distribution of the time required by the algorithm itself. From
it, other measures such as mean and variance can also be easily
computed.

Corollary 1: With perfect knowledge of 𝐹 and 𝑛, the
average number of slots required to select the best relay is

𝑚 (𝑛, 𝐹, 𝜁) = 1 +

∞∑
𝑡=1

(1− 𝐶 (𝑡;𝑛, 𝐹, 𝜁)) , (7)

where 𝐶 (𝑡;𝑛, 𝐹, 𝜁) is given by (6).
Proof: The proof is given in Appendix C.

Substituting (6) in (7) gives an equivalent unwrapped version
of the recursive equation in [15, (1)].

B. Impact of Imperfectly Known Relay Count 𝑛asm (With
Correct CDF, 𝐹asm = 𝐹)

We start with the simple case in which the relay count
used by the algorithm is incorrect. The CDF of the metric
is assumed to be perfectly known (𝐹asm = 𝐹) in this section.
The expressions for 𝐶 (𝑡;𝑛asm, 𝐹, 𝜁) and 𝑚 (𝑛asm, 𝐹, 𝜁) are as
follows.

Theorem 2: The probability that the best relay is selected
within 𝑡 slots, 𝐶 (𝑡;𝑛asm, 𝐹, 𝜁), when the number of relays is
assumed to be 𝑛asm and the actual value is 𝑛, is

𝐶 (𝑡;𝑛asm, 𝐹, 𝜁) = 𝐶

(
𝑡;𝑛, 𝐹,

𝑛

𝑛asm
𝜁

)
. (8)

Proof: The proof is given in Appendix D.
Corollary 2: The average number of slots required to se-

lect the best relay, when the assumed number of relays is 𝑛asm

and the actual value is 𝑛, is

𝑚 (𝑛asm, 𝐹, 𝜁) = 𝑚

(
𝑛, 𝐹,

𝑛

𝑛asm
𝜁

)
. (9)

Proof: The result directly follows from Theorem 2 and
Corollary 1.
Thus, the CDF and average of the selection duration with
imperfect relay count are the same as those for perfect
relay count (Sec. III-A), but with a different contention load
parameter.

C. Impact of Imperfectly Known CDF and Relay Count

We now consider the general case in which both the CDF
and the relay count are not known correctly (𝐹asm ∕= 𝐹 and
𝑛asm ∕= 𝑛). Analogous to the notation used in Sec. III-A, let
𝑝(𝑎, 𝑏; ℓ, 𝑢) be the probability that exactly 𝑏 more slots are
required given that 𝑎 relays transmitted in a slot. Further, let

ℓ ≜ 𝐹asm (𝐻𝐿) and 𝑢 ≜ 𝐹asm (𝐻𝐻) , (10)

where 𝐻𝐿 and 𝐻𝐻 are the lower and upper transmission
thresholds in a slot. Note the inclusion of the transmission
thresholds in 𝑝(𝑎, 𝑏; ℓ, 𝑢) for the imperfectly known CDF case.

The following lemma characterizes 𝑝(𝑎, 𝑏; ℓ, 𝑢) recursively.
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Lemma 2:

𝑝(𝑎, 𝑏; ℓ, 𝑢) = 𝑝

(
𝑎, 𝑏− 1, ℓ,

𝑢+ ℓ

2

)
(1 − 𝛽(ℓ, 𝑢))𝑎

+

𝑎∑
𝑖=2

(
𝑎

𝑖

)
(𝛽(ℓ, 𝑢))

𝑖
(1−𝛽(ℓ, 𝑢))𝑎−𝑖𝑝

(
𝑖, 𝑏− 1;

𝑢+ ℓ

2
, 𝑢

)
,

(11)

where 𝑝(𝑎, 1; ℓ, 𝑢) = 𝑎𝛽(ℓ, 𝑢)(1 − 𝛽(ℓ, 𝑢))𝑎−1 and

𝛽(ℓ, 𝑢) =
𝐹 eq(𝑢)−𝐹 eq( ℓ+𝑢

2 )
𝐹 eq(𝑢)−𝐹 eq(ℓ) . Here, 𝐹 eq = 𝐹 ∘ 𝐹 inv

asm is a com-
posite function that is defined by 𝐹 eq(𝑥) = 𝐹(𝐹 inv

asm(𝑥)).
Proof: The proof is relegated to Appendix E.

Thus, 𝑝(𝑎, 1; ℓ, 𝑢) depends on both the actual and estimated
CDFs of the metric. Note that with perfect statistical knowl-
edge, 𝐹 eq reduces to the identity function: 𝐹 eq(𝑥) = 𝑥.

Theorem 3: The probability that the algorithm selects the
best relay within 𝑡 slots when the CDF of the metric is
assumed to be 𝐹asm and the actual CDF is 𝐹, and the relay
count is assumed to be 𝑛asm when the actual relay count is 𝑛,
is

𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁) =

min(𝑡,𝑞′)−1∑
𝑖=1

𝑛∑
𝑘=2

[(
𝑛

𝑘

)(
𝐹 eq

(
1− 𝑖𝜁

𝑛asm

))𝑛−𝑘

×
(
𝐹 eq

(
1− (𝑖 − 1)𝜁

𝑛asm

)
− 𝐹 eq

(
1− 𝑖𝜁

𝑛asm

))𝑘

×
𝑡−𝑖∑
𝑗=1

𝑝

(
𝑘, 𝑗, 1− 𝑖𝜁

𝑛asm
, 1− (𝑖− 1)𝜁

𝑛asm

)]

+𝐼{𝑡>𝑞′+1}

[
𝐹 eq

(
1− 𝑞′𝜁

𝑛asm

)]𝑛 𝑡−𝑞′−1∑
𝑗=1

𝑝

(
𝑛, 𝑗, 0, 1− 𝑞′𝜁

𝑛asm

)

+

min(𝑡,𝑞′)∑
𝑖=1

𝑛

(
𝐹 eq

(
1− 𝑖𝜁

𝑛asm

))𝑛−1

×
[
𝐹 eq

(
1− (𝑖− 1)𝜁

𝑛asm

)
− 𝐹 eq

(
1− 𝑖𝜁

𝑛asm

)]
, (12)

where 𝑞′ =
⌈
𝑛asm
𝜁

⌉
− 1 and 𝐹 eq is defined in Lemma 2.

Proof: The proof is given in Appendix F.
The average number of slots required to select the best relay

then follows easily.
Corollary 3: The average number of slots required by

the selection algorithm when the CDF of the metric that is
assumed by the relays is 𝐹asm and the actual CDF is 𝐹 is
given by

𝑚 (𝑛asm, 𝐹asm, 𝜁) = 1 +

∞∑
𝑡=1

(1− 𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁)) , (13)

where 𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁) is given by (12).
Proof: The proof is similar to that in Appendix C, and is

not repeated here.
Note that the variance and higher moments can also be easily
evaluated from Theorem 3.

The following corollary, which directly follows from The-
orem 3, shows how the problem with imperfect relay count
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Fig. 2. CDF of the number of slots required to select the best relay given
imperfect CDF knowledge (𝜁 = 1 and 𝑛 = 8).

and imperfect CDF is equivalent to a simpler problem with
imperfect CDF but correct relay count.

Corollary 4:

𝐶 (𝑡;𝑛asm, 𝐹asm, 𝜁) = 𝐶

(
𝑡;𝑛, 𝐹asm,

𝑛

𝑛asm
𝜁

)
, (14)

𝑚 (𝑛asm, 𝐹asm, 𝜁) = 𝑚

(
𝑛, 𝐹asm,

𝑛

𝑛asm
𝜁

)
. (15)

D. Numerical Results

We now graphically illustrate the impact of imperfect CDF
on the selection algorithm’s performance. As an example, we
take the metric to have an exponential distribution, as is the
case for the channel power gain of a frequency-flat Rayleigh
fading channel. Its mean is taken to be unity. Therefore, the
actual CDF is 𝐹(𝑡) = 1 − 𝑒−𝑡, 𝑡 ≥ 0. Note that our analysis
applies to other distributions as well. Let the assumed CDF in
this example be 𝐹asm(𝑡) = 1 − 𝑒−𝜆est𝑡, 𝑡 ≥ 0. The closer 𝜆est

is to 1, the more accurate is the assumed CDF.
Figure 2 plots 𝐶 (𝑡;𝑛, 𝐹asm, 𝜁) for 𝑛 = 8 relays. Observe

that the curve shifts downwards compared to the one for
the perfect knowledge case, which implies a degradation in
performance. For example, the median time to select increases
by 24% when 𝜆est = 1.4 and by 60% when 𝜆est = 0.6.
Thus, the performance degradation can be significant. The
corresponding average number of slots required to select the
best relay is plotted in Fig. 3 as a function of the number of
relays in the system for 𝜆est = 1.2. On account of imperfect
CDF, once 𝑛 exceeds 11, we observe that the algorithm
requires more than 2.507 slots to select the best relay; this
was the upper bound derived in [14] for the perfect knowledge
case.

Figure 4 plots 𝐶 (𝑡;𝑛asm, 𝐹, 𝜁) when 𝑛 = 20 relays
are present in the system, but the number of relays is
assumed to be either 10 or 30. The CDF of the metric,
(which is assumed to be perfectly known in this example)
is 𝐹asm(𝑡) = 𝐹(𝑡) = 1− 𝑒−𝑡, 𝑡 ≥ 0. Again, when 𝑛asm ∕= 𝑛,
one observes a degradation in performance. For example, the
median time required to select the best relay increases by 10%
and 26% when 𝑛asm is 30 and 10, respectively.

Figure 5 plots the average number of slots to select the
best relay as a function of 𝑛, for 𝑛asm = (1 + 0.4)𝑛, which
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Fig. 3. Zoomed-in view of the average number of slots required to select
the best relay given imperfect CDF knowledge (𝜁 = 1).
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Fig. 4. CDF of the number of slots required to select the best relay when
the assumed number of relays is incorrect (𝜁 = 1 and 𝑛 = 20).

is shown in the figure as ‘+40% error in 𝑛’, and 𝑛asm =
(1− 0.4)𝑛, which is shown as ‘−40% error in 𝑛’. While the
average number of slots increases, it saturates for larger 𝑛; this
is unlike the case with imperfect CDF knowledge in Fig. 3.
Note also that the analytical results match the Monte Carlo
simulation results well in both the figures.

IV. ON THE ACCURACY OF CDF ESTIMATE FOR

SPLITTING BASED SELECTION

The previous section derived a general expression for the
time required to select the best relay as a function of any
assumed CDF 𝐹asm. This result is useful in a network in which
𝐹asm is pre-specified. An alternate approach is for a network
to update its estimate of the CDF, 𝐹asm, on the basis of the
realizations of the metric observed by the sink or relays or
both. The sink then communicates 𝐹asm to all the relays.2

Increasing the number of observations improves the accuracy
of the CDF estimate. However, it also increases the time
required for estimation. In the following, we apply the analysis
developed in Sec. III to determine the number of observations
that are required to ensure that performance degradation of the

2Over a finite bandwidth broadcast channel, the sink can only communicate
a discretized version of 𝐹asm to all the relays. One solution that enables
this is the following. The sink communicates the quantized versions of the
observations to all the relays, which then use the same technique to estimate
the CDF. We have observed that with 4 or more bits per observation, the effect
of quantization is negligible. A detailed discussion and results are omitted due
to space constraints.
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Fig. 5. Zoomed-in view of the average number of slots required to select
the best relay when the assumed number of relays is incorrect (𝜁 = 1). A
‘+40% error in 𝑛’ means 𝑛asm = 1.4𝑛, while a ‘−40% error in 𝑛’ means
𝑛asm = 0.6𝑛.

algorithm lies within a pre-specified limit. This number also
clearly depends on the CDF estimation technique used.

In general, the estimation techniques fall into two broad
classes:

∙ In parametric estimation, the functional form of the CDF
is assumed to be known a priori at the sink and the relays.

∙ In non-parametric estimation, no prior information about
the CDF of the metric is assumed; the estimated CDF
is a function of only the observations collected. His-
togram, empirical CDF, kernel estimators, orthogonal
series estimators, and restricted maximum likelihood den-
sity estimators are examples of non-parametric estimation
methods [31]–[33].

So long as the assumed form of the CDF is correct, parametric
estimation requires fewer observations than non-parametric
estimation to estimate the CDF. However, non-parametric
estimation is more general as it requires no prior information
about the CDF.

We separately investigate parametric and non-parametric
CDF estimation techniques below, and quantify their impact
on the selection algorithm’s performance. Given the vast lit-
erature on estimation, we focus on some common techniques.

A. Parametric Estimation

This is best understood by means of a case study. As before,
let the metrics be i.i.d. exponentially distributed RVs. Thus, the
actual CDF of the metrics is 𝐹(𝑥) = 1− 𝑒−𝜆𝑥, 𝑥 ≥ 0, where
𝜆−1 is the mean that is unknown and needs to be estimated.
Let the CDF assumed be 𝐹asm(𝑥) = 1 − 𝑒−𝜆est𝑥, 𝑥 ≥ 0. The
maximum likelihood estimate, 𝜆est, of 𝜆 is the inverse of the
empirical mean of the collected observations [34, Chap. IV].

Therefore, we get 𝐹 eq(𝑥) = 𝐹(𝐹 inv
asm(𝑥)) = 1− (1− 𝑥)

𝜆
𝜆est ,

0 ≤ 𝑥 ≤ 1. Substituting this in Theorem 3 yields the following
analytical expression for the probability that the best relay is
selected within 𝑡 slots:

𝐶 (𝑡;𝑛, 𝐹asm, 𝜁) =

min(𝑡,𝑞)∑
𝑖=1

𝑛

(
1−

(
𝑖𝜁

𝑛

) 𝜆
𝜆est

)𝑛−1
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Fig. 6. Percentage increase in the average time required to select the best
relay as a function of the number of observations used to estimate the CDF.
Parametric estimation is used and the metrics are exponentially distributed
RVs with unit mean (𝜁 = 1 and 𝑛 = 10).

×
[(

𝑖𝜁

𝑛

) 𝜆
𝜆est −

(
(𝑖− 1)𝜁

𝑛

) 𝜆
𝜆est

]

+

min(𝑡,𝑞)−1∑
𝑖=1

𝑛∑
𝑘=2

[(
𝑛

𝑘

)((
𝑖𝜁

𝑛

) 𝜆
𝜆est −

(
(𝑖− 1)𝜁

𝑛

) 𝜆
𝜆est

)𝑘

×
(
1−

(
𝑖𝜁

𝑛

) 𝜆
𝜆est

)𝑛−𝑘 𝑡−𝑖∑
𝑗=1

𝑝

(
𝑘, 𝑗, 1− 𝑖𝜁

𝑛
, 1− (𝑖− 1)𝜁

𝑛

)]

+ 𝐼{𝑡>𝑞+1}

(
1−

(
𝑞𝜁

𝑛

) 𝜆
𝜆est

)𝑛 𝑡−𝑞−1∑
𝑗=1

𝑝

(
𝑛, 𝑗, 0, 1− 𝑞𝜁

𝑛

)
,

(16)

where 𝑝(𝑎, 𝑏, ℓ, 𝑢) is given by Lemma 2 (with 𝛽(ℓ, 𝑢) =
𝑢

𝜆
𝜆est −( ℓ+𝑢

2 )
𝜆

𝜆est

𝑢
𝜆

𝜆est −ℓ
𝜆

𝜆est

in (11)). Note that corresponding expressions

can also be derived when the metrics follow other probability
distributions.

Figure 6 plots the percentage increase in the average number
of slots as a function of the number of observations used
to parametrically estimate the CDF. As the number of ob-
servations increases, the average number of slots required to
select converges to that of the perfect knowledge case since
𝜆est converges almost surely to 𝜆. With just 25 observations,
the average number of slots required to select increases by 6%
compared to the perfect knowledge case. The increase is just
3% when 50 observations are used for CDF estimation. Also,
note the close match between the analytical and Monte Carlo
simulation results.

B. Non-parametric Estimation

Given the many non-parametric estimation methods de-
veloped in the literature, we focus on the classical Kernel
estimators. Let 𝑥1, 𝑥2, . . . , 𝑥𝑠 be 𝑠 independent observations
of the metric with an unknown CDF 𝐹(𝑥). These are used to
come up with an estimate 𝐹asm(𝑥) of the CDF. This estimate
is then used by the selection algorithm, as per Sec. II-B. Let
𝑓 denote the (unknown) probability density function (PDF) of
the metric.
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Fig. 7. Zoomed-in view of the average number of slots required to select the
best relay as a function of the smoothing parameter ℎ used for non-parametric
estimation. Gaussian kernel estimator is used and the metrics are exponentially
distributed random variables with unit mean (𝜁 = 1 and 𝑛 = 10).

The kernel estimate, 𝑓asm(𝑥), of PDF 𝑓(𝑥) is given as

𝑓asm(𝑥) =
1

𝑠ℎ

𝑠∑
𝑖=1

𝐾

(
𝑥− 𝑥𝑖
ℎ

)
, (17)

where the function 𝐾 is called the Kernel, ℎ is a smooth-
ing parameter [32, Chap. 7], and 𝑓asm denotes the assumed
(estimated) PDF. Hence, the CDF estimate is given by

𝐹asm(𝑥) =

∫ 𝑥

−∞
𝑓asm(𝑦) 𝑑𝑦 =

1

𝑠ℎ

𝑠∑
𝑖=1

∫ 𝑥

−∞
𝐾

(
𝑦 − 𝑥𝑖
ℎ

)
𝑑𝑦.

(18)
The kernel function 𝐾(𝑦) is typically a smooth unimodal

symmetric function with a peak at 𝑦 = 0. As the number
of observations increases, the estimated PDF converges to
the actual PDF. One common example is a zero-mean unit-

variance Gaussian kernel: 𝐾(𝑦) = 1√
2𝜋
𝑒−

𝑦2

2 , 𝑦 ∈ ℝ. A
second example is the Epanechnikov kernel, which is defined
as 𝐾(𝑦) = 3

4 (1−𝑦2)𝐼{∣𝑦∣≤1}. It gives the smallest asymptotic
integrated mean squared error (IMSE) [31]. A third example
is the empirical CDF, which is obtained when 𝐾(𝑦) = 𝛿(𝑦),
where 𝛿(𝑦) denotes the Dirac-delta function.

An important point to note here is that for the Kernel
estimator to work efficiently, the smoothing parameter ℎ needs
to be judiciously chosen, as is the case in several problems
involving non-parametric estimation [33]. This becomes ev-
ident from Fig. 7, which plots the average number of slots
required by the splitting algorithm to select the best relay as
a function of ℎ, when the Gaussian kernel is used. We choose
the Gaussian kernel since it has an infinite support and yet
performs almost as well as the Epanechnikov kernel [31]. We
observe that the optimal value of ℎ lies in between 0.2 and 0.4
regardless of the number of observations used. For ℎ = 0.3
and 20 observations, the average time to select increases by
21.6% (compared to the perfect knowledge case). With 50
observations, the increase is just 5.1%. When the 10 relays
make these observations in parallel, the 50 observations can
be obtained in just 5 coherence intervals. Thus, updating the
CDF is easily feasible.

Remark 4: When the linearly interpolated empirical CDF
is used, the increase in the average number of slots is greater
than for the Gaussian kernel estimator. For example, with
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25 observations, the increase is 25.6% > 21.6%. However,
the empirical CDF does not face the challenging problem of
having to judiciously choose a smoothing parameter [31].

V. ON ACCURACY OF THE RELAY COUNT ESTIMATE AND

DETERMINING A ROBUST 𝜁

The analysis in Sec. III showed that the performance of
the selection algorithm depends only on the ratio 𝑛

𝑛asm
and

𝜁. Even though the system may not know the actual relay
count, it can be designed to handle 𝑛asm lying within a range
of the actual value, i.e., 𝑛

𝑛asm
∈ [Δmin,Δmax]. In general, the

larger the range, the more the uncertainty about the actual
relay count. Clearly, Δmin = Δmax corresponds to perfectly
known relay count. It is, therefore, of interest to see if the
selection algorithm’s parameters can be chosen so as to make
the algorithm’s performance robust to this uncertainty.

We do this as follows. Using the analysis developed in
Sec. III, we find a robust value of 𝜁 that minimizes the worst
case impact of the uncertainty on the average selection time.
Mathematically, the problem can be formulated as follows:

𝜁∗ = argmin
𝜁>0

[
max

𝑛
𝑛asm

∈[Δmin,Δmax]
𝑚 (𝑛asm, 𝐹, 𝜁)

]
,

= argmin
𝜁>0

[
max

𝑛
𝑛asm

∈[Δmin,Δmax]
𝑚

(
𝑛, 𝐹,

𝑛

𝑛asm
𝜁

)]
. (19)

Here, (19) follows from Corollary 2. The expression for
𝑚
(
𝑛, 𝐹, 𝑛𝜁

𝑛asm

)
is given in (7).3

As can be seen in [15, Fig. 2], 𝑚 (𝑛, 𝐹, 𝜁) has a minimum at
𝜁 = 1.088. For 𝜁 < 1.088, 𝑚 (𝑛, 𝐹, 𝜁) increases as 𝜁 decreases
since more slots are wasted as idle slots. However, once 𝜁
exceeds 1.088, 𝑚 (𝑛, 𝐹, 𝜁) increases as 𝜁 increases because
the number of collisions increases and the algorithm wastes
more time resolving them. This observation implies that 𝜁∗ is
the solution of:

𝑚 (𝑛, 𝐹,Δmin𝜁
∗) = 𝑚 (𝑛, 𝐹,Δmax𝜁

∗) . (20)

Intuitively, the worst case error occurs at the two extreme
points, Δmin and Δmax, of the uncertainty range. When 𝜁 =
𝜁∗, the penalty becomes the same for the two extreme points.
Any deviation from 𝜁∗ increases the penalty for at least one of
the extreme points and is sub-optimal. Substituting (7) in (20)
and numerically solving (20) yields 𝜁∗.

We shall henceforth refer to 𝜁∗ as the ‘robust 𝜁’. Figure 8
plots the maximum increase in the average number of slots
as a function of the maximum percentage error in the relay
count when 𝑛 = 25. Consider, for example, the case when the
maximum error in 𝑛 is ±20%, i.e., Δmin = 1/1.2 = 0.83 and
Δmax = 1/0.8 = 1.25. In this case, the maximum increase in
the average number of slots with 𝜁∗ is 1.0%. If instead 𝜁 is set
as 1.088, which is the optimal value if 𝑛 is known perfectly
and is large, the maximum increase is 1.7%. Similarly, for a
±50% uncertainty range for 𝑛, the maximum increase in the
average number of slots is 10.5% for 𝜁 = 𝜁∗ as compared to
15.0% for 𝜁 = 1.088.

3The problem can be simplified even further by approximating
𝑚

(
𝑛, 𝐹, 𝑛

𝑛asm
𝜁
)

with its asymptote 𝑚
(
∞, 𝐹, 𝑛

𝑛asm
𝜁
)

. This approximation
is accurate for 𝑛 as small as 10 [15].
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Fig. 8. Maximum percentage increase in the average time required to select
the best relay as a function of the maximum percentage error in the relay
count when the robust 𝜁∗ is used (𝑛 = 25). Also shown is the degraded
performance when the value of 𝜁 is set to 1.088, which is the optimal value
for perfect knowledge of relay count.

VI. CONCLUSIONS

Selection algorithms are essential in multi-relay wireless
systems such as cooperative communication systems, in which
the relays are geographically distributed and possess only local
channel knowledge. The splitting based selection algorithm,
which is based on multiple access principles, is appealing
because it is fast and scalable. In this paper, we analyzed the
impact of imperfect knowledge of two fundamental parameters
required by the selection algorithm. The analysis led to
expressions for the probability that the algorithm selects the
best relay within a pre-specified time and, consequently, the
average time required to select the best relay.

We also studied a system that updates its statistical knowl-
edge, and developed a direct correspondence between the
number of observations used to estimate the CDF of the metric
and the degradation in the algorithm’s performance. We saw
that the selection time increases by just 3% for parametric
estimation and by just 5% for non-parametric estimation with
only 50 observations for exponentially distributed metrics.
Thus, two orders of magnitude fewer samples are required than
what has been considered possible using the stochastic ap-
proximation based parameter tuning approach pursued in [24].
Even with an uncertainty range of 50% in the number of
relays, the worst case increase in the average selection time of
the robust version of the algorithm was just 10.5%. Thus, the
splitting based selection can work satisfactorily in a practical
deployment, and ensures that a significant portion of the
coherence time is available for cooperative data transmission
using the selected relay.

The results in this paper motivate a further study of the
performance of other selection algorithms such as the timer
backoff based selection algorithm in cooperative systems.
Interesting problems include a generalization of the techniques
developed in this paper to include feedback errors and the per-
formance evaluation of splitting algorithms for multiple access
control with imperfect parameter knowledge. While the paper
focused on cooperative systems, selection arises in several
other wireless systems such as cellular systems, wireless local
area networks, and wireless sensor networks. A specialized
performance evaluation of the impact of imperfect knowledge
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on the overall performance of these wireless systems is another
interesting avenue for future work.

APPENDIX

A. Proof of Lemma 1

If 𝑎 ≥ 2 relays are involved in a collision, then the
probability that 𝑖 relays, which have i.i.d. uniformly distributed
metrics, transmit in the next slot is equal to

(
𝑎
𝑖

)
1
2𝑎 . This

is because the interval is split into lower and upper half
intervals, and only relays in the upper half interval transmit.
Thus, 𝑝(𝑎, 1), which is the probability that exactly one relay
transmits in the next slot, equals 𝑎/2𝑎.

For 𝑏 > 1, the following three mutually exclusive cases
arise in calculating 𝑝(𝑎, 𝑏):

1) The next slot is idle: This happens when no relay lies in
the upper half interval. The probability of its occurrence
is
(
𝑎
0

)
/2𝑎. Further, it also implies that all the 𝑎 relays

must lie in the lower half interval, which is split in
subsequent slots. In such a case, the best relay must
be found from the 𝑎 relays in exactly 𝑏− 1 slots, which
occurs with probability 𝑝(𝑎, 𝑏− 1).

2) The next slot is a collision among 𝑖 relays: This occurs
with probability

(
𝑎
𝑖

)
/2𝑎. The best relay needs to be

found from among the 𝑖 relays in exactly 𝑏 − 1 slots,
which happens with probability 𝑝(𝑖, 𝑏− 1).

3) The next slot is a success: In this case, the algorithm
has already terminated in fewer than 𝑏 slots. This case,
therefore, does not contribute to 𝑝(𝑎, 𝑏).

Using the law of total probability, we get the desired result
in (5).

B. Proof of Theorem 1

Since the thresholds are lowered by 𝜁/𝑛 after every idle

slot, the idle phase duration can never exceed 𝑞 + 1 =
⌈
𝑛
𝜁

⌉
slots. Consider first the case where 𝑡 ≥ 𝑞 + 1. Thus,
min(𝑡, 𝑞) = 𝑞. The probability that the first non-idle slot is the
𝑖th slot and a success occurs in it (i.e., one node transmits) is

𝜁
(
1− 𝑖𝜁

𝑛

)𝑛−1

. If 𝑘 ≥ 2 relays collide instead in the first non-

idle slot (𝑖th slot and 𝑖 ≤ 𝑞), the probability that the collision
is resolved in any of the remaining 𝑡− 𝑖 slots is

∑𝑡−𝑖
𝑗=1 𝑝(𝑘, 𝑗).

This is because 𝑝(𝑎, 𝑏), by definition, is the probability that
exactly 𝑏 slots are required to resolve a collision among 𝑎
relays. The probability that the first non-idle slot is the 𝑖th

slot and 𝑘 relays collided in it is
(
𝑛
𝑘

) (
𝜁
𝑛

)𝑘 (
1− 𝑖𝜁

𝑛

)𝑛−𝑘

, for
𝑖 ≤ 𝑞.

In the (𝑞 + 1)th slot, all the 𝑛 relays in the system must
necessarily transmit since the lower threshold, 𝐻𝐿[𝑞 + 1],
becomes 0 (as per (1)). Further, no relay must have transmitted
in an earlier slot. Therefore, the probability that the (𝑞 + 1)th

slot is the first non-idle slot is
(
1− 𝑞𝜁

𝑛

)𝑛
. In this case, the

best relay must be found within 𝑡−(𝑞+1) slots, which occurs
with probability

∑𝑡−𝑞−1
𝑗=1 𝑝(𝑛, 𝑗).

When 𝑡 < 𝑞+1, only the cases considered above in which
the first non-idle slot occurs on or before the min(𝑡, 𝑞) slot
need to be considered. Hence, in either case, the desired
result, which is written in a compact form using the indicator
function, follows from the law of total probability.

C. Proof of Corollary 1

Consider a non-negative integer-valued random variable 𝑋 .
We know that

𝑋 =

∞∑
𝑡=0

𝐼{𝑋>𝑡}. (21)

Taking expectation on both sides yields

E [𝑋 ] =
∞∑
𝑡=0

E
[
𝐼{𝑋>𝑡}

]
=

∞∑
𝑡=0

(1 − Pr (𝑋 ≤ 𝑡)).

In our problem, 𝑋 is the number of slots required by the
algorithm to select the best relay. Substituting the expression
for Pr (𝑋 ≤ 𝑡), which is derived in (6), in (21) gives the
desired result.

D. Proof of Theorem 2

During the idle phase, the lower thresholds for the first 𝑖
idle slots are given by 𝐻𝐿[1] = 𝐹 inv

(
1− 𝜁

𝑛asm

)
, 𝐻𝐿[2] =

𝐹 inv
(
1− 2𝜁

𝑛asm

)
, . . . , 𝐻𝐿[𝑖] = 𝐹 inv

(
1− 𝑖𝜁

𝑛asm

)
. Given that the

first non-idle slot is the 𝑖th slot and 𝑘 relays collide in it,
the probability that the best relay gets selected in any of the
remaining 𝑡− 𝑖 slots is

∑𝑡−𝑖
𝑗=1 𝑝(𝑘, 𝑗). The probability that the

first non-idle slot is the 𝑖th slot and 𝑘 relays collide in it is(
𝑛
𝑘

)(
𝜁

𝑛asm

)𝑘 (
1− 𝑖𝜁

𝑛asm

)𝑛−𝑘

, for 𝑖 ≤ 𝑞′. Here, 𝑞′ =
⌈
𝑛asm
𝜁

⌉
−1.

The probability that the first non-idle slot is the (𝑞′+1)th slot

and 𝑘 relays transmit in it is
(
1− 𝑞′𝜁

𝑛asm

)𝑛
, for 𝑘 = 𝑛, and

is 0, otherwise. Hence, the expression is the same as that in
Theorem 1, with 𝜁 replaced by 𝑛

𝑛asm
𝜁.

E. Proof of Lemma 2

The threshold update rules in Sec. II-B ensure
that, among all the relays that collide in the
interval (𝐻𝐿, 𝐻𝐻) =

(
𝐹 inv

asm(ℓ), 𝐹
inv
asm(𝑢)

)
, only

those relays whose metrics lie in the interval(
𝐹 inv

asm

(
𝐹asm(𝐻𝐿)+𝐹asm(𝐻𝐻)

2

)
, 𝐻𝐻

)
=

(
𝐹 inv

asm(
ℓ+𝑢
2 ), 𝐹 inv

asm(𝑢)
)

transmit in the next slot. Let 𝛽(ℓ, 𝑢) denote the probability
that a relay 𝑖 transmits in the next slot, given that it was just
involved in a collision. It is given by

𝛽(ℓ, 𝑢) =
Pr
(
𝜇𝑖 ∈

(
𝐹 inv

asm

(
ℓ+𝑢
2

)
, 𝐹 inv

asm(𝑢)
))

Pr (𝜇𝑖 ∈ (𝐹 inv
asm(ℓ), 𝐹

inv
asm(𝑢)))

. (22)

Since the actual CDF of 𝜇𝑖 is 𝐹, (22) simplifies to

𝛽(ℓ, 𝑢) =
𝐹(𝐹 inv

asm(𝑢))− 𝐹(𝐹 inv
asm(

ℓ+𝑢
2 ))

𝐹(𝐹 inv
asm(𝑢))− 𝐹(𝐹 inv

asm(ℓ))
,

=
𝐹 eq (𝑢)− 𝐹 eq

(
ℓ+𝑢
2

)
𝐹 eq (𝑢)− 𝐹 eq (ℓ)

, (23)

where 𝐹 eq = 𝐹 ∘ 𝐹 inv
asm. Since the metrics are i.i.d., the

probability that 0 ≤ 𝑖 ≤ 𝑎 relays transmit in the next slot
is
(
𝑎
𝑖

)
𝛽(ℓ, 𝑢)𝑖(1 − 𝛽(ℓ, 𝑢))𝑎−𝑖.

For 𝑏 = 1, 𝑝(𝑎, 1, ℓ, 𝑢) is simply the probability that one
relay out of 𝑎 relays transmits in the next slot. Therefore,

𝑝(𝑎, 1, ℓ, 𝑢) = 𝑎𝛽(ℓ, 𝑢)(1− 𝛽(ℓ, 𝑢))𝑎−1.
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Now, consider 𝑏 > 1. Given that 𝑎 relays collided, the
following three mutually exclusive events are possible in the
next slot:

∙ An idle occurs with probability (1 − 𝛽(ℓ, 𝑢))𝑎. In this
case, the best relay is to be selected from among the 𝑎
relays, which lie in the interval

(
𝐹 inv

asm(ℓ), 𝐹
inv
asm

(
ℓ+𝑢
2

))
,

in exactly (𝑏 − 1) slots. This occurs with probability
𝑝
(
𝑎, 𝑏− 1, ℓ, ℓ+𝑢

2

)
.

∙ A success occurs, in which case the probability that a
success occurs again exactly 𝑏− 1 slots later is clearly 0.

∙ A collision occurs among 𝑖 ≥ 2 relays in the next
slot, in which case the best relay is to be selected
from among the 𝑖 relays that lie in the interval(
𝐹 inv

asm

(
ℓ+𝑢
2

)
, 𝐹 inv

asm(𝑢)
)

in 𝑏 − 1 slots. This occurs with
probability 𝑝

(
𝑖, 𝑏− 1, ℓ+𝑢

2 , 𝑢
)
.

Hence, the desired result follows from the law of total prob-
ability.

F. Proof of Theorem 3

Note that the probability that a given relay’s metric lies in
the interval (𝜏1, 𝜏2) is 𝐹 (𝜏2) − 𝐹 (𝜏1). Let 𝑡 ≥ 𝑞′ + 1. For
𝑖 ≤ 𝑞′ < 𝑡, let the first non-idle slot be the 𝑖th slot and let
𝑘 ≥ 1 relays transmit in it. Then the metrics of the 𝑘 relays
lie in the interval

(
𝐹 inv

asm

(
1− 𝑖𝜁

𝑛asm

)
, 𝐹 inv

asm

(
1− (𝑖−1)𝜁

𝑛asm

))
and

the rest of the relays’ metrics lie below 𝐹 inv
asm

(
1− 𝑖𝜁

𝑛asm

)
. Since

the metrics are i.i.d., the probability of this event happening
for 𝑖 ≤ 𝑞′ equals

(
𝑛

𝑘

)[
𝐹 eq

(
1− (𝑖− 1)𝜁

𝑛asm

)
− 𝐹 eq

(
1− 𝑖𝜁

𝑛asm

)]𝑘

×
(
𝐹 eq

(
1− 𝑖𝜁

𝑛asm

))𝑛−𝑘

,

where 𝐹 eq = 𝐹 ∘ 𝐹 inv
asm, as defined before. The proba-

bility that after the 𝑖th slot, in which a collision occurs,
the best relay is found in the remaining 𝑡 − 𝑖 slots is∑𝑡−𝑖

𝑗=1 𝑝
(
𝑘, 𝑗, 1− 𝑖𝜁

𝑛asm
, 1− (𝑖−1)𝜁

𝑛asm

)
.

Also, the first non-idle slot is the (𝑞′ + 1)th slot if all

the metrics of the 𝑛 relays lie in
(
0, 𝐹 inv

asm

(
1− 𝑞′𝜁

𝑛asm

))
. The

probability of this equals
(
𝐹 eq

(
1− 𝑞′𝜁

𝑛asm

))𝑛
. In this case, the

probability that the best relay is found in any of the 𝑡−(𝑞′+1)

slots that remain is
∑𝑡−𝑞′−1

𝑗=1 𝑝
(
𝑛, 𝑗, 0, 1− 𝑞′𝜁

𝑛asm

)
.

When 𝑡 < 𝑞′ +1, the best relay will get selected if the first
non-idle slot occurs on or before min(𝑡, 𝑞′) slots. Hence, in
either case, the desired result follows from the law of total
probability.
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