Remarks:

- Collaboration, discussion, and working in teams to solve problems is strongly encouraged.
- To test your understanding, write the solution to each problem in your own words without referring to a friend, text, or class notes.

Problems:

1. Recall the notation that \(\leq_n \) stands for the relation "is less than or equals for all sufficiently large \(n \)". Suppose that for each \(\varepsilon > 0 \), we have \(a_n \leq_n a + \varepsilon \). Show that \(\lim \sup_{n \to \infty} a_n \leq a \).

2. Let \(a_n \leq b_n \). Show that \(\lim \sup_{n \to \infty} a_n \leq \lim \sup_{n \to \infty} b_n \).

3. Let \(a = \lim \sup_{n \to \infty} a_n \in \mathbb{R} \). Show that for every \(\varepsilon > 0 \), the inequality \(a_n > a - \varepsilon \) occurs infinitely often.

4. What are the analogous statements for \(\lim \inf \)?

5. Show that \(\lim \inf_{n \to \infty} a_n \leq \lim \sup_{n \to \infty} a_n \).

6. Show that \(\lim \inf_{n \to \infty} a_n = \lim \sup_{n \to \infty} a_n = a \in \mathbb{R} \) if and only if the following holds: for every \(\varepsilon > 0 \), there exists an \(N \) such that \(n \geq N \) implies \(|a_n - a| \leq \varepsilon \). This establishes that the usual notion of a limit and the one via \(\lim \sup \) and \(\lim \inf \) are equivalent.

7. Problem 3.3 of Cover and Thomas (2nd edition).

For this problem, generate \(\binom{n}{k} p^k (1 - p)^{n-k} \) and \(-n^{-1} \log p(x^n)\) values by yourselves (via matlab or otherwise) and check if they match with the text.