\section{\(\mathcal{C} = \mathcal{D} \)}

\textbf{Theorem 1.} \(\mathcal{C} = \mathcal{D} \)

\textit{Proof.} (\(\mathcal{D} \subseteq \mathcal{C} \))

It is sufficient to show \(\mathcal{D}_1 := \text{conv} \left(\bigcup_{Z \in \mathcal{D}} \mathcal{C}(Z) \right) \subseteq \mathcal{C}_1 := \left(\bigcup_{Z \in \mathcal{D}} \mathcal{C}(Z) \right) \)

Let \(R \in \mathcal{D}_1 \). This implies \(\exists L \in \mathbb{N}, \exists Z^{(\ell)} \in \mathcal{D}, \ell \in [L], \exists R^{(\ell)} \in \mathcal{C}(Z^{(\ell)}), \ell \in [L], \) and \(\exists \lambda_\ell \geq 0, \ell \in [L], \) such that \(\sum_{\ell \in [L]} \lambda_\ell = 1 \) and

\[R = \sum_{\ell \in [L]} \lambda_\ell R^{(\ell)}. \]

Since,

\[R^{(\ell)} \in \mathcal{C}(Z^{(\ell)}), \quad \ell \in [L], \]

we have

\[\sum_{\ell \in S} R^{(\ell)} \leq I(X^{\ell}_S; Y^{(\ell)} | X^{\ell}_{S^c}), \quad \ell \in [L] \]

and therefore,

\[\sum_{\ell \in [L]} \lambda_\ell R^{(\ell)} \leq \sum_{\ell \in [L]} \lambda_\ell I(X^{(\ell)}_S; Y^{(\ell)} | X^{(\ell)}_{S^c}), \ell \in [L] = I(X_S; Y | X_{S^c}, Q), \]

for a suitably defined \(Z = QX_1X_2Y \in \mathcal{D}^*. \) Thus \(R \in \mathcal{C}(Z) \) for some \(Z \in \mathcal{D}^* \) and therefore \(R \in \mathcal{C}_1 \).

\textbf{We now prove the other part:} \(\mathcal{C} \subseteq \mathcal{D} \). Once again, it is sufficient to show that \(\mathcal{D}_1 \subseteq \mathcal{D} \).

Let \(R \in \mathcal{D}_1 \), i.e., \(R \in \mathcal{C}(Z) \) for some \(Z \in \mathcal{D}^* \).

\(\mathcal{C}(Z) \) is a polyhedron associated with a polymatroid.

By Edmonds’ result, \(R \) is dominated by a convex combination of the maximal extreme points of \(\mathcal{C}(Z) \).

We show that every maximal extreme point of \(\mathcal{C}(Z) \) is in \(\mathcal{D}_1 \) to complete the proof that \(R \in \mathcal{D} \).

Let \(r \in \mathcal{C}(Z) \) be a maximal extreme point. By Edmonds’ result, refer to fact in Lec. 5, \(r \) is a v(\(\pi \)) for some permutation \(\pi \), i.e.,

\[r_{k_i} = \rho(\{k_1, k_2, \cdots, k_i\}) - \rho(\{k_1, k_2, \cdots, k_{i-1}\}), \quad i = 1, 2, \cdots, K \]

where \(k_1, k_2, \cdots, k_K \) is some permutation of \([K] \). Expanding \(r_{k_i} \), we get

\[r_{k_i} = I(X_{k_1}, X_{k_2}, \cdots, X_{k_i}; Y | X_{k_{i+1}}, \cdots, X_{k_K}, Q) - I(X_{k_1}, X_{k_2}, \cdots, X_{k_{i-1}}; Y | X_{k_1}, X_{k_{i+1}}, \cdots, X_{k_K}, Q) \]

\[= \sum_{\ell=1}^{[Q]} p_\ell(S) \left[\rho_\ell \left(\{k_1, k_2, \cdots, k_i\} \right) - \rho_\ell \left(\{k_1, k_2, \cdots, k_{i-1}\} \right) \right] \]

where \(\rho_\ell(S) = I(X_S; Y | X_{S^c}, Q = \ell) \). This implies that \(r \) is a convex combination of maximal extreme points of the polymatroidal polyhedra \(\mathcal{C}(Z^{(\ell)}) \), where \(Z^{(\ell)} \in \mathcal{D} \) and therefore \(r \in \mathcal{D}_1 \).

\(\square \)
2 Bounds on $|Q|$

Recall that $\mathcal{C} = \text{closure} \left(\bigcup_{Z \in \mathcal{P}^*} \mathcal{C}(Z) \right)$, where $Z = QX_1X_2Y$.

Theorem 2. (Caratheodory) If $A \subseteq \mathbb{R}^d$ and $a^* \in \text{conv } A$, then $a^* = \sum_{\ell=0}^{d} \lambda_\ell a^{(\ell)}$, where $a^{(\ell)} \in A$ and $\sum_{\ell=0}^{d} \lambda_\ell = 1, \lambda_\ell \geq 0, \forall \ell \in [d]$.

Proof. Exercise. See Grunbaum for an elegant proof.

Theorem 3. \mathcal{C} does not reduce if we restrict $Z = QX_1X_2Y \in \mathcal{P}^*$ to those vectors such that $|Q| = 4$.

Proof. Consider $Z = QX_1X_2Y \in \mathcal{P}^$ with Q taking values in $Q = \{1, 2, \ldots, |Q|\}$.

- Observe that $X_1^{(\ell)}X_2^{(\ell)}Y^{(\ell)} \sim p_{X_1X_2Y|Q}(\cdot|Q = \ell) \in \mathcal{P}$.
- Also, if $\overline{Q} \subseteq Q$, \overline{Q} any random variable taking values in \overline{Q}, then $Z = \overline{Q}X_1X_2Y$ defined by $p_Z = p_{\overline{Q}X_1X_2Y}(\ell_{x_1x_2y}) = p_{\overline{Q}}(\ell)p_{X_1X_2Y|Q}(\cdot|Q = \ell) \in \mathcal{P}^*$.
- $\mathcal{C}(Z)$ is completely defined by

$$a = \begin{bmatrix} I(X_1;Y|X_2Q) \\ I(X_2;Y|X_1Q) \\ I(X_1X_2;Y|Q) \end{bmatrix} \in \text{conv } A,$$

where

$$A = \left\{ a^{(\ell)} = \begin{bmatrix} I(X_1;Y|X_2,Q = \ell) \\ I(X_2;Y|X_1,Q = \ell) \\ I(X_1X_2;Y|Q = \ell) \end{bmatrix}, \ \ell = 1, 2, \ldots, |Q| \right\} \subseteq \mathbb{R}^3.$$

- By Caratheodory's theorem, $\exists \overline{Q} = \{\ell_0, \ell_1, \ell_2, \ell_3\} \subseteq Q$ such that $a = \sum_{m=0}^{3} \lambda_{\ell_m} a^{(\ell_m)}$.
- Define \overline{Q} as follows: $p_{\overline{Q}}(\ell_m) = \lambda_{\ell_m}, \ m = 0, 1, 2, 3$, to get $Z = \overline{Q}X_1X_2Y \in \mathcal{P}^*$.
- Easy to extend the above argument to K users, in which case we need $|Q| = 2^K$.

\[\square \]

Lecture 6 : Equivalence of \mathcal{C} and \mathcal{P}, and Caratheodory’s theorem -2