Information Dissemination in Social Networks under the Linear Threshold Model

Srinivasan Venkatramanan and Anurag Kumar

Department of Electrical Communication Engineering,
Indian Institute of Science,
Bangalore 560 012.
{vsrini,anurag} @ece.iisc.ernet.in

3 January, 2011
Outline of Talk

1. Social Networks and Applications
2. Mathematical Model
3. Recursive Analytical Expressions
4. Examples
5. The HILT Model: ODE Approximation
6. Final Remarks
Social Networks

- A collection of individuals with pair-wise relationships between them
 - Naturally modelled as a graph
- Recently much interest in the context of information and communication technologies
 - World-wide-web link networks
 - Online social networks, email-contact networks
 - Citation networks and coauthorship networks
 - Forwarding in mobile opportunistic networks
- An important application area for “Network Science”
Mobile Wireless Opportunistic Networks

- **Disruption (or Delay) Tolerant Networks (DTN)**
 - People or vehicles carry mobile communication devices
 - Links form when such nodes come in “contact”
 - Data moves by *Store-and-Carry-Forward* (much like a postal system)
 - Suitable for some services, e.g., asynchronous messaging, content distribution (e.g., news)
 - “Pocket Switched Networks (PSN)”

- **Mobility models**
- **Contact models**
 - Not every physical contact may lead to link formation
 - Communication link formation can depend on existence of a *social link*

- **Forwarding models**
 - Not every link formation should lead to message transfer
 - Message forwarding should depend on who has been met and his/her relation to the destination in a social network
 - Recall: greedy geographical forwarding!

- Hence, need to bring in the social network model above the traditional DTN model
One of the interesting problems to consider is modeling and analyzing spread of information among the nodes in the network.

Applications
- Identifying most influential nodes in the network for viral marketing
- Characterize the spread of epidemics across the network
- Propose suitable vaccination and quarantine schemes to impede the spread of epidemics

Recent study facilitated by massive quantities of data available for empirical analysis, from social media sites.

The recent DARPA Network Challenge [1] tested the ability of such massive ad-hoc teams to solve real-world problems, with applications to disaster management.
To characterize information spread, it is essential to know the underlying graph structure.

In most scenarios, it is not practically feasible to obtain/work with the entire network data.

Random graphs were used to model such networks in the past, but in reality, there are imperceptible rules rather than randomness that drives the network structure.

Network science allows us to incorporate random graphs along with models of graph evolution (based on local interaction) to obtain a more realistic model of the network.
Outline of Talk

1. Social Networks and Applications
2. Mathematical Model
3. Recursive Analytical Expressions
4. Examples
5. The HILT Model: ODE Approximation
6. Final Remarks
The social network is modeled by a directed weighted graph \(\mathcal{N} = (V, E) \).

Edge weights \(w_{ij} \) give a measure of influence of node \(i \) on node \(j \).

Activation process:
- We begin with an initial set of active nodes \(A_0 \).
- At each step \(k \), new nodes are added to the active set \(A_k \) by the influence of their neighbours.
- Nodes once activated cannot become inactive (progressive case).
- This goes on until we reach a terminal set \(A_S \).
Activation Model: The Linear Threshold Model

- We require that $\sum_{i \neq j} w_{i,j} \leq 1$
- At the beginning, each node j randomly chooses a threshold Θ_j distributed uniformly over $[0,1]$
 - The thresholds are independent across the nodes
- At step k, a node j gets activated if, it had been inactive until step $k-1$ and
 $$\sum_{i \in A_{k-1}} w_{i,j} \geq \Theta_j$$
 - i.e., the total influence of the active nodes into j exceeds the threshold of j

$$\sum_i w_{i,j} \leq 1, \forall j$$
Threshold models to explain collective behaviour were first put forward by Granovetter in [2], where he discussed the spread of binary decisions, among a group of rational agents (e.g. voting models).

Domingos and Richardson [3] studied information diffusion under the viral marketing framework, and proposed the combinatorial optimization problem of finding the most influential nodes.

Kempe et al. [4] studied the influence spread problem under the LT and IC (independent cascade) model.

- Studied the problem of obtaining the optimal initial set of size K (in the sense of maximising the expected size of the final active set)
- Showed that the problem is NP-hard
- The objective function is monotone and submodular, and hence the greedy algorithm has an approximation factor of $(1 - \frac{1}{e})$

Recent works include a general framework for cost effective outbreak detection [5], where they exploit the submodularity property to propose a lazy forward algorithm to achieve near greedy algorithm performance.
Our Contributions

- We consider only the LT activation model
- Recursive analytical expressions for the expected information spread achieved by an initial set under the Linear Threshold model
- Interpretation in terms of acyclic paths in a certain DTMC
- Insights into information spread in some simple network topologies, such as the star, ring, and certain special mesh networks
- Homogeneous Influence LT model (HILT): by using Kurtz’s theorem, we show that, an appropriately scaled version of the influence process, converges to a system of ODEs
 - Provide explicit formulas for trajectories followed by the influence process
 - Simple design formulas can be obtained
Notation

\(\mathcal{N} \): weighted directed graph of the entire social network
\(w_{i,j} \): edge weights of \(\mathcal{N} \) indicating influence from \(i \) to \(j \)
\(\mathbf{W} \): influence matrix with \(w_{i,j} \) as entries
\(\Theta_j \): random threshold chosen by \(j \) uniformly from \([0, 1]\)
\(b_j(A) := \sum_{i \in A} w_{i,j} \), total influence into node \(j \) from set \(A \)

\(A_0 \): Initial active set
\(A_k \): Set of all active nodes at time step \(k \)
\(D_k \): Set of infectious nodes at time step \(k \)

\(S := \arg\min_k \{ A_k = A_{k-1} \} \)
\(g_j(\mathcal{N},A)(k) := P(\mathcal{N} \mid j \in D_k \mid A_0 = A) \)
\(g_j(\mathcal{N},A) := P(\mathcal{N},A \mid j \in A_S) \)
\(\sigma(\mathcal{N},A) := \mathbb{E}(\mathcal{N},A \mid |A_S|) \)
Outline of Talk

1. Social Networks and Applications
2. Mathematical Model
3. Recursive Analytical Expressions
4. Examples
5. The HILT Model: ODE Approximation
6. Final Remarks
The following key lemma writes the activation probabilities \(g_j^{(\mathcal{N},A_0)}(k) \) in recursive form.

The i.i.d. uniformly distributed activation threshold plays a key role in the proof.

Lemma

1. \(j \in A_0 \),
 - (a) \(g_j^{(\mathcal{N},A_0)}(0) = 1 \)
 - (b) \(g_j^{(\mathcal{N},A_0)}(k) = 0 \), for all \(k > 0 \)

2. \(j \notin A_0 \),
 - (a) \(g_j^{(\mathcal{N},A_0)}(0) = 0 \)
 - (b) \(g_j^{(\mathcal{N},A_0)}(k) = \sum_{l \in \mathcal{N} \setminus \{j\}} g_l^{(\mathcal{N} \setminus \{j\},A_0)}(k - 1) w_{l,j} \), for all \(k > 0 \)
Proof.

- 1(a), 1(b) and 2(a) are obvious.
- For 2(b), since $A_0 \subset \mathcal{N}\{j\}$,

$$g_j^{(\mathcal{N},A_0)}(k) = \mathbb{P}(\mathcal{N}\{j\},A_0)\left(b_j(A_{k-2}) < \Theta_j \leq b_j(A_{k-1})\right)$$

Since $D_{k-1} = A_{k-1} \setminus A_{k-2}$, and Θ_j is chosen uniformly from [0,1], we can write,

$$g_j^{(\mathcal{N},A_0)}(k) = \mathbb{E}(\mathcal{N}\{j\},A_0)[b_j(D_{k-1})]$$

$$= \mathbb{E}(\mathcal{N}\{j\},A_0)\left[\sum_{l \in \mathcal{N}\{j\}} |\{l \in D_{k-1}\}| w_{l,j}\right]$$

$$= \sum_{l \in \mathcal{N}\{j\}} g_l^{(\mathcal{N}\{j\},A_0)}(k-1) w_{l,j}$$
The previous result yields

\[g_{j}^{(N,i)}(k) = \sum_{l_1 \neq i,j} \sum_{l_2 \neq i,j,l_1} \cdots \sum_{l_{k-1} \neq i,j,l_1,l_2,\ldots,l_{k-2}} w_{i,l_1} w_{l_1,l_2} \cdots w_{l_{k-1},j} \]

i.e., starting with \(A_0 = \{i\} \), the probability that \(j \) is activated at Step \(k \) is the sum of the product of path-weights along all \(k \)-hop acyclic paths starting at \(i \) and ending at \(j \).

Further, \(g_{j}^{(N,A)}(k) \) is just the sum of the weights of such paths that avoid the set \(A_0 = A \) (except for the initial node).
Total Expected Activation due to \(\{i\} \): \(\sigma(\mathcal{N},i) \)

Theorem

Given a social network \(\mathcal{N} \), with influence matrix \(\mathbf{W} \), the total influence of any node \(i \) in the network under the LT model is given by

\[
\sigma(\mathcal{N},i) = 1 + \sum_{j \in \mathcal{N} \setminus \{i\}} w_{i,j} \sigma(\mathcal{N} \setminus \{i\},j)
\]

(1)

Proof.

Note that,

\[
\sigma(\mathcal{N},i) = \sum_{k=0}^{\infty} \sum_{j \in \mathcal{N}} g_{j}(\mathcal{N},i)(k)
\]

In the above expression, by substituting using the previous lemma recursively and rearranging summations, we get the theorem.
Total Expected Activation due to Set A_0: $\sigma(N,A_0)$

Theorem

Given a network N with influence matrix W and an initial set A_0, for all $i \in A_0$, define sub-networks $N_{i,A_0} = \{N \setminus A_0\} \cup \{i\}$. Then the expected influence of the initial set A_0 is given by,

$$\sigma(N,A_0) = \sum_{i \in A_0} \sigma(N_{i,A_0},i)$$ \hspace{1cm} (2)

Proof.

The proof follows by substituting the $g_j^{(N,A_0)}(k)$ expressions and noting that the edge weights $\{w_{i,j}, j \in A_0\}$ do not have any effect on $\sigma(N,A_0)$. This allows us to split the problem of evaluating influences sub-problems each involving only one node from A_0.

☐
Illustrations of the Recursive Calculations for $\sigma^{(N, A)}$

Singleton Initial Set $\{i\}$

Initial Set $A_0 = \{i, k\}$
Replacing an Initial Set with a “Supernode”

Theorem

Given a network \mathcal{N}, with influence matrix \mathbf{W}, an initial set A_0 can be replaced by a supernode X as shown below. Then, $\sigma^{(\mathcal{N}, A_0)}$ is equal to the influence of X in the modified network, with X being counted as $|X|$ nodes instead of 1.

$\forall v \notin X,$

$w_{X,v} = w_{i,v} + w_{j,v} + w_{k,v}$

$w_{v,X} = w_{v,i} + w_{v,j} + w_{v,k}$

Re替ing the initial set with a supernode
A Discrete Time Markov Chain

- $P := W^T$ is a row substochastic matrix with zero diagonal terms
 - Make stochastic by adding $p_{j,j}$ values, appropriately
- Interpret P as the transition matrix of a DTMC $\{X_k\}$, obtained by reversing the edges in the social network
- Define

 $$c_k(j \to A_0) := \mathbb{P}(\{X_m \in \mathcal{N}\setminus A_0, 0 \leq m < k, X_k \in A_0, X_0 \neq X_1 \neq \cdots \neq X_k\} | X_0 = j)$$

 the probability of the DTMC reaching A_0 for the first time via a k step acyclic path, given that $X_0 = j$
- Also, define

 $$c(j \to A_0) := \sum_{k=0}^{\infty} c_k(j \to A_0)$$

 i.e., given that we start from state j, the probability of hitting the set A_0 for the first time through an acyclic path
In general, it can be shown that
\[
g_j^{(N,A_0)}(k) = c_{k}(j \to A_0)
\]

This viewpoint leads to an alternative proof of the monotonicity and submodularity of \(\sigma(N,A_0)\)
Outline of Talk

1. Social Networks and Applications
2. Mathematical Model
3. Recursive Analytical Expressions
4. Examples
5. The HILT Model: ODE Approximation
6. Final Remarks
Consider the star topology network \mathcal{N} with N nodes including the hub
- e.g., a central authority through which all influence/information must be disseminated
- $\alpha(\leq 1)$: influence of the hub on peripheral nodes
- $\beta(\leq \frac{1}{N-1})$: influence of each peripheral node on the hub
What is the optimal initial set of size K?

Let $H(K)$: set with one hub node and $K - 1$ peripheral nodes.

$\tilde{H}(K)$: set with K peripheral nodes

The recursive expressions yield

$$
\sigma(N,H(K)) = K + \alpha(N - K)
$$

$$
\sigma(N,\tilde{H}(K)) = K + K \beta(1 + \alpha(N - K - 1))
$$

There exists α^*, such that $\sigma(N,\tilde{H}(K)) > \sigma(N,H(K))$ for $\alpha < \alpha^*$, i.e., it is optimal to exclude the hub from the initial set

$$
\alpha^* = \frac{K}{(N - K)\frac{1}{\beta} - K(N - K - 1)}
$$
Consider the ring topology \mathcal{N} with N homogeneous nodes.

$\alpha \leq 0.5$ denotes the influence of any node on each of its neighbours.
Let \(A(K) \) be an initial set of \(K \) nodes

\((a_1, a_2, \ldots, a_K) \): Indices of the chosen nodes in the ring

\((l_1, l_2, \ldots, l_K) \) be the number of nodes in between the chosen nodes in the ring, i.e. \(l_1 = a_2 - a_1 - 1, \ l_2 = a_3 - a_2 - 1 \) and so on

Then the earlier analysis yields

\[
\sigma(N, A(K)) = K + 2 \frac{\alpha}{1 - \alpha} \left(K - \sum_{i=1}^{K} \alpha^{l_i} \right)
\]

In order to maximize the influence, we see that the \(K \) nodes should be distributed uniformly over the ring

- Argument via majorisation and Shur convexity

Also, with \(\alpha = 0.5 \), for large \(N \) and small \(K \), the influence of \(A(K) \) grows as \(3K \)
Degree Based Model

- Start with an undirected graph without cycles, whose adjacency matrix is given by M
- d_j: the degree of node j
- Define W as follows

$$w_{i,j} = m_{i,j} / d_j$$
\[\sigma(N,j) = 1 + 1 + 0.25(1 + 1 + 1 + 0.333(1 + 1 + 1)) = 3 = d_j + 1 \]
Theorem

Consider an acyclic undirected network \mathcal{N} with degree based influence weights (as defined). Then, for any node $i \in \mathcal{N}$,

$$\sigma^{(\mathcal{N},i)} = d_i + 1$$

- Note that the local property (a node’s degree) governs its global property (influence on the entire network)
- The most influential node is the one with the highest degree, and the set of top-K influential nodes has high correlation with the set of top-K high degree nodes
UISLT: Uniform Influence and Susceptance LT Model

- Two parameters α_i and β_i associated with the node i
- Measures of the level of influence and susceptance of the node i

Define $w_{i,j} = \alpha_i \times \beta_j$, for all $j \neq i$

$\alpha_i, \beta_i, 1 \leq i \leq N$, are chosen such that, $\sum_{j \neq i} w_{j,i} \leq 1$
Uniform Models

\[\sum_{j \neq i} \alpha_j \leq \frac{1}{\beta_i}, \forall i \]

Uniform Influence and Susceptance (UISLT) model

\[\sum_{i \neq j} \alpha_i \leq 1, \forall j \]

Uniform Influence (UILT) model

\[\beta_i \leq \frac{1}{|N|-1}, \forall i \]

Uniform Susceptance (USLT) model
USLT and UILT Models: Optimal Initial Set

- **USLT**: The optimal A_0 in this case, is found to be the set of K nodes with least β_i values, i.e. *the least susceptible ones*

- **UILT**: The optimal A_0 in this case, is found to be the set of K nodes with highest α_i values, i.e. *the most influential ones*

- For these models, this turns out to be equivalent to picking the K nodes with the top-K values of the stationary p.m.f. of $P = W^T$
Google’s PageRank algorithm, in its simplest form, ranks pages by calculating the stationary probability over the “influence” graph of web-pages, by assuming a random surfer model.

Thus, PageRank yields the optimum solution for UILT and USLT.

We have found general UISLT examples where PageRank can perform poorly.
Outline of Talk

1. Social Networks and Applications
2. Mathematical Model
3. Recursive Analytical Expressions
4. Examples
5. The HILT Model: ODE Approximation
6. Final Remarks
Homogeneous Influence Linear Threshold (HILT) Model

Consider a network of N nodes with a complete graph.

Each edge carries an equal weight $\gamma \leq \frac{1}{N-1}$.

Define $h^{(N)}_{\gamma}(k) := \sigma^{(N,A)}$, for all A of size k.

By using the analytical expressions derived earlier, we obtain

$$h^{(N)}_{\gamma}(k) = k[1 + (N - k)\gamma[1 + (N - k - 1)\gamma[1 + \cdots$$

We would like to approximate the evolution of the influence process.

We study this via a fluid limit in the large N regime.
The Activation Markov Chain

- Let $A(k)$ and $D(k)$ be the sizes of the active and infectious sets at step $k \geq 0$
- Define $B(k) = A(k - 1)$
 - $B(k)$ is the size of the set of active nodes that have already “exercised their influence” (no longer “infectious”)
- Consider the process $(B(k), D(k)), k \geq 0$, with $B(0) = 0$ and $D(0) = |A(0)|$
- Using the uniformly distributed i.i.d. activation thresholds

\[
B(k + 1) = B(k) + D(k)
\]

\[
P(D(k + 1) = \ell | (B(i), D(i)), 0 \leq i \leq k - 1, (B(k), D(k)) = (b, d))
\]

\[
= \binom{N - b - d}{\ell} \left(\frac{\gamma d}{1 - \gamma b} \right)^{\ell} \left(1 - \frac{\gamma d}{1 - \gamma b} \right)^{(N - b - d - \ell)}
\]

\[
= P(D(k + 1) = \ell | B(k) = b, D(k) = d)
\]
Scaling the Process \((B(k), D(k))\)

- Define a scaled Markov process \((B^N(k), D^N(k))\)
 - Can be viewed as evolving over “minislots” of width \(\frac{1}{N}\), whereas the original process evolves over unit steps
- In each minislot, each node in \(D^N(k)\) decides to spread its influence with probability \(\frac{1}{N}\) or defer with probability \(1 - \frac{1}{N}\)
- In the former case, it contributes influence of \(\gamma\) and then moves to the set \(B^N(k + 1)\), else it stays in \(D^N(k + 1)\) set
- Defining \(\tilde{B}^N(k) = \frac{B^N(k)}{N}\), \(\tilde{D}^N(k) = \frac{D^N(k)}{N}\), the evolution equations can be written as follows:

\[
\tilde{B}^N(k + 1) = \tilde{B}^N(k) + \frac{\tilde{D}^N(k)}{N} + \tilde{Y}^N(k + 1)
\]

\[
\tilde{D}^N(k + 1) = \frac{N - 1}{N} \tilde{D}^N(k) + \frac{\Gamma \frac{\tilde{D}^N(k)}{N}}{1 - \Gamma \tilde{B}^N(k)} (N - \tilde{B}^N(k) - \tilde{D}^N(k)) + \tilde{Z}^N(k + 1)
\]

where we have asserted that \(\gamma\) scales with \(N\) as \(\frac{\Gamma}{N}\)
ODE approximation to HILT model

- The hypotheses of Kurtz’s theorem [6] (uniform convergence of drift to a Lipschitz function, and condition on “noise” variance)
- Applying the theorem we conclude that for every $\epsilon > 0$ and $T > 0$
 $$P\left(\sup_{0 \leq t \leq T} \left\| (\tilde{B}^N(\lfloor Nt \rfloor), \tilde{D}^N(\lfloor Nt \rfloor)) - (b(t), d(t)) \right\| > \epsilon \right) \xrightarrow{N \to \infty} 0$$
- where $(b(t), d(t))$ is the unique solution of the ODE (with given $(b(0), d(0))$)
 $$\dot{b}(t) = d(t)$$
 $$d(t) = -d(t) + \frac{\Gamma d(t)}{1 - \Gamma b(t)}(1 - b(t) - d(t))$$
- Solving the ODE for $b(0) = 0, d(0) = d_0$, defining $r = 1 - \Gamma - \Gamma d_0$, we obtain
 $$b(t) = \frac{d_0}{r} - \frac{d_0}{r} e^{-rt}$$
 $$d(t) = d_0 e^{-rt}$$
Convergence of $\tilde{B}^N(\lfloor Nt \rfloor), \tilde{D}^N(\lfloor Nt \rfloor)$ to $(b(t), d(t))$

- The trajectory of the ODE is plotted along with sample paths of the scaled process $\tilde{B}^N(\lfloor Nt \rfloor), \tilde{D}^N(\lfloor Nt \rfloor)$ for $N=50, 100, 500, 1000$

Convergence of scaled HILT process to the ODE solution – Illustration of Kurtz’s theorem
Approximation of the Original Process by the ODE

- Simulation of the original process \((\frac{B(k)}{N}, \frac{D(k)}{N}) \) compared with the ODE solution \((b(t), d(t)) \)
We have an approximation to the trajectory of the activation process.

Given that we start with d_0 fraction of nodes in the infectious set, the final fraction of activated nodes (b_∞) is $\frac{d_0}{r}$ where $r = 1 - \Gamma + \Gamma d_0$.

Given b_∞, the optimal d_0 to be chosen is given by,

$$d_0 = \frac{b_\infty (1 - \Gamma)}{1 - b_\infty \Gamma}$$

For large N, with $\Gamma < 1$ we cannot influence the entire population (i.e., $b_\infty = 1$) unless we start with the entire population active (i.e., $d_0 = 1$).

But if $\Gamma = 1$ then $b_\infty = 1$ provided $d_0 > 0$.

We can also answer questions on time-constrained influence spread, where we are interested in the value of $a(T) = b(T) + d(T)$, given finite T.

- Time T at which $a(T) = \alpha$, given d_0 and Γ.
- Optimal d_0 to start with so that $a(T) \geq \alpha$.
Outline of Talk

1 Social Networks and Applications
2 Mathematical Model
3 Recursive Analytical Expressions
4 Examples
5 The HILT Model: ODE Approximation
6 Final Remarks
Other Related Work

- We have used the Acyclic Path Probabilities interpretation to provide an alternative proof to the monotonicity and submodularity of the function $\sigma(N,A_0)$.

- Using the recursive expression, we have identified special cases where the PageRank algorithm is optimal for the influence maximization problem.

- We have also given a heuristic algorithm (G1-sieving) for Influence maximization problem, based on insights from the recursive expression, which performs on par with the Greedy algorithm.

- We have extended the work done on fluid limit for HILT model to multi-class scenario and derived the approximating system of ODE.
Future Work

- We can consider mobile nodes (as in a Delay-Tolerant Network), where nodes are able to transfer influence only on meeting.
- The problem can also be generalized to edge weights and threshold functions varying with time.
- Finally, we can also study information dissemination with different activation processes, and on more generic networks to gain insights into the underlying mechanisms of information dissemination.
Darpa Network Challenge 2010.

Mark Granovetter.
Threshold models of collective behaviour.

Matt Richardson and Pedro Domingos.
Mining knowledge-sharing sites for viral marketing.
In ACM SIGKDD, 2002.

D. Kempe, J. Kleinberg, and E. Tardos.
Maximizing the spread of influence through a social network.
Cost-effective outbreak detection in networks.
In ACM SIGKDD, 2007.

Thomas G. Kurtz.